首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Dielectric tetrahedrons as terahertz resonators switched from perfect absorber to reflector
  • 本地全文:下载
  • 作者:Haosheng Chen ; Chenchen Zhou ; Yongjian Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-74252-0
  • 出版社:Springer Nature
  • 摘要:Tetrahedrons are basic building blocks in natural and artificial materials, while the terahertz response of micro tetrahedrons has been little explored. Here we fabricate subwavelength ceramic tetrahedrons for use in the terahertz frequency range, and find that the three-dimensional geometry significantly affects their terahertz properties. The transmission spectra are independent of the orientation of the tetrahedrons, while the first magnetic resonance disappears in the reflection spectra when an upright tetrahedron is flipped upside down on the metallic substrate, which changes it from a perfect absorber to a perfect reflector. This is attributed to the destructive interference between two magnetic dipoles induced respectively by the incident and the reflected wave. The study brings new insights in the materials design with 3D building blocks to realize more interesting and exotic terahertz properties.
  • 其他摘要:Abstract Tetrahedrons are basic building blocks in natural and artificial materials, while the terahertz response of micro tetrahedrons has been little explored. Here we fabricate subwavelength ceramic tetrahedrons for use in the terahertz frequency range, and find that the three-dimensional geometry significantly affects their terahertz properties. The transmission spectra are independent of the orientation of the tetrahedrons, while the first magnetic resonance disappears in the reflection spectra when an upright tetrahedron is flipped upside down on the metallic substrate, which changes it from a perfect absorber to a perfect reflector. This is attributed to the destructive interference between two magnetic dipoles induced respectively by the incident and the reflected wave. The study brings new insights in the materials design with 3D building blocks to realize more interesting and exotic terahertz properties.
国家哲学社会科学文献中心版权所有