摘要:Random packings are crucial in understanding arrangement and geometry of particles. Random packings of dry small particles may be subject to adhesion or friction, as expected theoretically and numerically. We explore experimentally random packings of dry colloids with X-ray nanotomography that directly provides three-dimensional structural and geometric information of dry colloidal packings. We find that dry colloidal packings, as characterized by contact number and packing density, are quite consistent with adhesive loose packings that significantly deviate from random loose packings for hard spheres. This study may offer direct evidence for adhesive loose packings comprising dry small particles, as proven by X-ray nanotomography.
其他摘要:Abstract Random packings are crucial in understanding arrangement and geometry of particles. Random packings of dry small particles may be subject to adhesion or friction, as expected theoretically and numerically. We explore experimentally random packings of dry colloids with X-ray nanotomography that directly provides three-dimensional structural and geometric information of dry colloidal packings. We find that dry colloidal packings, as characterized by contact number and packing density, are quite consistent with adhesive loose packings that significantly deviate from random loose packings for hard spheres. This study may offer direct evidence for adhesive loose packings comprising dry small particles, as proven by X-ray nanotomography.