首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Structural basis of peroxidase catalytic cycle of human Prdx6
  • 本地全文:下载
  • 作者:Rimpy Kaur Chowhan ; Hamidur Rahaman ; Laishram Rajendrakumar Singh
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-74052-6
  • 出版社:Springer Nature
  • 摘要:Peroxiredoxin 6 (Prdx6) is a ubiquitously expressed antioxidant non-selenium glutathione peroxidase that is known to play a major role in various physiological and pathological processes. It belongs to the family of peroxidases (referred to as Peroxiredoxins, Prdx’s) that work independently of any prosthetic groups or co-factors, and instead utilize a peroxidatic thiol residue for peroxide reduction. Mammalian Prdx’s are classified according to the number of Cys implicated in their catalytic activity by the formation of either inter-molecular (typical 2-Cys, Prdx1–4) or intra-molecular (atypical 2-Cys, Prdx5) disulfide bond, or non-covalent interactions (1-Cys, Prdx6). The typical and atypical 2-Prdx’s have been identified to show decamer/dimer and monomer/dimer transition, respectively, upon oxidation of their peroxidatic cysteine. However, the alterations in the oligomeric status of Prdx6 as a function of peroxidatic thiol’s redox state are still ambiguous. While the crystal structure of recombinant human Prdx6 is resolved as a dimer, the solution structures are reported to have both monomers and dimers. In the present study, we have employed several spectroscopic and electrophoretic probes to discern the impact of change in the redox status of peroxidatic cysteine on conformation and oligomeric status of Prdx6. Our study indicates Prdx6′s peroxidase activity to be a redox-based conformation driven process which essentially involves monomer–dimer transition.
  • 其他摘要:Abstract Peroxiredoxin 6 (Prdx6) is a ubiquitously expressed antioxidant non-selenium glutathione peroxidase that is known to play a major role in various physiological and pathological processes. It belongs to the family of peroxidases (referred to as Peroxiredoxins, Prdx’s) that work independently of any prosthetic groups or co-factors, and instead utilize a peroxidatic thiol residue for peroxide reduction. Mammalian Prdx’s are classified according to the number of Cys implicated in their catalytic activity by the formation of either inter-molecular (typical 2-Cys, Prdx1–4) or intra-molecular (atypical 2-Cys, Prdx5) disulfide bond, or non-covalent interactions (1-Cys, Prdx6). The typical and atypical 2-Prdx’s have been identified to show decamer/dimer and monomer/dimer transition, respectively, upon oxidation of their peroxidatic cysteine. However, the alterations in the oligomeric status of Prdx6 as a function of peroxidatic thiol’s redox state are still ambiguous. While the crystal structure of recombinant human Prdx6 is resolved as a dimer, the solution structures are reported to have both monomers and dimers. In the present study, we have employed several spectroscopic and electrophoretic probes to discern the impact of change in the redox status of peroxidatic cysteine on conformation and oligomeric status of Prdx6. Our study indicates Prdx6′s peroxidase activity to be a redox-based conformation driven process which essentially involves monomer–dimer transition.
国家哲学社会科学文献中心版权所有