摘要:There has been a significant increase in autism spectrum disorder (ASD) in the last decades that cannot be exclusively attributed to better diagnosis and an increase in the communication of new cases. Patients with ASD often show dysregulation of proteins associated with synaptic plasticity, notably brain-derived neurotrophic factor (BDNF). The objective of the present study was to analyze BDNF serum concentration levels in children with classic forms autism and a healthy control group to determine if there is a correlation between ASD and BDNF serum levels. Forty-nine children with severe classic form of autism, and 37 healthy children were enrolled in the study. Blood samples, from both patients and controls, were collected and BNDF levels from both groups were analyzed. The average BDNF serum concentration level was statistically higher for children with ASD (P < 0.000) compared to the control group. There is little doubt that BDNF plays a role in the pathophysiology of ASD development and evolution, but its brain levels may fluctuate depending on several known and unknown factors. The critical question is not if BDNF levels can be considered a prognostic or diagnostic marker of ASD, but to determine its role in the onset and progression of this disorder.
其他摘要:Abstract There has been a significant increase in autism spectrum disorder (ASD) in the last decades that cannot be exclusively attributed to better diagnosis and an increase in the communication of new cases. Patients with ASD often show dysregulation of proteins associated with synaptic plasticity, notably brain-derived neurotrophic factor (BDNF). The objective of the present study was to analyze BDNF serum concentration levels in children with classic forms autism and a healthy control group to determine if there is a correlation between ASD and BDNF serum levels. Forty-nine children with severe classic form of autism, and 37 healthy children were enrolled in the study. Blood samples, from both patients and controls, were collected and BNDF levels from both groups were analyzed. The average BDNF serum concentration level was statistically higher for children with ASD (P < 0.000) compared to the control group. There is little doubt that BDNF plays a role in the pathophysiology of ASD development and evolution, but its brain levels may fluctuate depending on several known and unknown factors. The critical question is not if BDNF levels can be considered a prognostic or diagnostic marker of ASD, but to determine its role in the onset and progression of this disorder.