首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model
  • 本地全文:下载
  • 作者:Shunsuke Oba ; Tadahiro Sunagawa ; Reiko Tanihiro
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-74379-0
  • 出版社:Springer Nature
  • 摘要:Yeast mannan (YM) is an indigestible water-soluble polysaccharide of the yeast cell wall, with a notable prebiotic effect on the intestinal microbiota. We previously reported that YM increased Bacteroides thetaiotaomicron abundance in in vitro rat faeces fermentation, concluding that its effects on human colonic microbiota should be investigated. In this study, we show the effects of YM on human colonic microbiota and its metabolites using an in vitro human faeces fermentation system. Bacterial 16S rRNA gene sequence analysis showed that YM administration did not change the microbial diversity or composition. Quantitative real-time PCR analysis revealed that YM administration significantly increased the relative abundance of Bacteroides ovatus and B. thetaiotaomicron. Moreover, a positive correlation was observed between the relative ratio (with or without YM administration) of B. thetaiotaomicron and B. ovatus (r = 0.92), suggesting that these bacteria utilise YM in a coordinated manner. In addition, YM administration increased the production of acetate, propionate, and total short-chain fatty acids. These results demonstrate the potential of YM as a novel prebiotic that selectively increases B. thetaiotaomicron and B. ovatus and improves the intestinal environment. The findings also provide insights that might be useful for the development of novel functional foods.
  • 其他摘要:Abstract Yeast mannan (YM) is an indigestible water-soluble polysaccharide of the yeast cell wall, with a notable prebiotic effect on the intestinal microbiota. We previously reported that YM increased Bacteroides thetaiotaomicron abundance in in vitro rat faeces fermentation, concluding that its effects on human colonic microbiota should be investigated. In this study, we show the effects of YM on human colonic microbiota and its metabolites using an in vitro human faeces fermentation system. Bacterial 16S rRNA gene sequence analysis showed that YM administration did not change the microbial diversity or composition. Quantitative real-time PCR analysis revealed that YM administration significantly increased the relative abundance of Bacteroides ovatus and B. thetaiotaomicron . Moreover, a positive correlation was observed between the relative ratio (with or without YM administration) of B. thetaiotaomicron and B. ovatus (r = 0.92), suggesting that these bacteria utilise YM in a coordinated manner. In addition, YM administration increased the production of acetate, propionate, and total short-chain fatty acids. These results demonstrate the potential of YM as a novel prebiotic that selectively increases B. thetaiotaomicron and B. ovatus and improves the intestinal environment. The findings also provide insights that might be useful for the development of novel functional foods.
国家哲学社会科学文献中心版权所有