首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Analytical determination of theoretic quantities for multiple potential
  • 本地全文:下载
  • 作者:C. A. Onate ; M. C. Onyeaju ; A. Abolarinwa
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-73372-x
  • 出版社:Springer Nature
  • 摘要:The approximate analytical solutions of the three-dimensional radial Schrödinger wave equation with a multiple potential function has been studied using a suitable approximation scheme to the centrifugal term in the framework of parametric Nikiforov–Uvarov method. The energy equation and the wave function were obtained. The calculated wave function was used to study Shannon entropy and variance via expectation values. The behaviour of Shannon entropy and variance respectively with the equilibrium bond length were examined in detail. A special case of the multiple potential (pseudoharmonic-like potential) was equally examined under Shannon entropy and variance. For further application of the study, some diatomic molecules were examined under variance and Shannon entropy. Finally, some variance inequalities were derived using Cramer-Rao uncertainty relation and these were justified by numerical results.
  • 其他摘要:Abstract The approximate analytical solutions of the three-dimensional radial Schrödinger wave equation with a multiple potential function has been studied using a suitable approximation scheme to the centrifugal term in the framework of parametric Nikiforov–Uvarov method. The energy equation and the wave function were obtained. The calculated wave function was used to study Shannon entropy and variance via expectation values. The behaviour of Shannon entropy and variance respectively with the equilibrium bond length were examined in detail. A special case of the multiple potential (pseudoharmonic-like potential) was equally examined under Shannon entropy and variance. For further application of the study, some diatomic molecules were examined under variance and Shannon entropy. Finally, some variance inequalities were derived using Cramer-Rao uncertainty relation and these were justified by numerical results.
国家哲学社会科学文献中心版权所有