首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Impact of heat generation/absorption of magnetohydrodynamics Oldroyd-B fluid impinging on an inclined stretching sheet with radiation
  • 本地全文:下载
  • 作者:Fazle Mabood ; Gabriella Bognár ; Anum Shafiq
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-74787-2
  • 出版社:Springer Nature
  • 摘要:In this paper, we have investigated thermally stratified MHD flow of an Oldroyd-B fluid over an inclined stretching surface in the presence of heat generation/absorption. Similarity solutions for the transformed governing equations are obtained. The reduced equations are solved numerically using the Runge–Kutta Fehlberg method with shooting technique. The influences of various involved parameters on velocity profiles, temperature profiles, local skin friction, and local Nusselt number are discussed. Numerical values of local skin friction and local Nusselt number are computed. The significant outcomes of the study are that the velocity decreases when the radiation parameter $$R_{d}$$ is increased while the temperature profile is increased for higher values of radiation parameter $$R_{d}$$ in case of opposing flow, moreover, growth in Deborah number $$ eta_,$$ enhance the velocity and momentum boundary layer. The heat transfer rate is decrease due to magnetic strength but increase with the increased values of Prandtl and Deborah numbers. The results of this model are closely matched with the outputs available in the literature.
  • 其他摘要:Abstract In this paper, we have investigated thermally stratified MHD flow of an Oldroyd-B fluid over an inclined stretching surface in the presence of heat generation/absorption. Similarity solutions for the transformed governing equations are obtained. The reduced equations are solved numerically using the Runge–Kutta Fehlberg method with shooting technique. The influences of various involved parameters on velocity profiles, temperature profiles, local skin friction, and local Nusselt number are discussed. Numerical values of local skin friction and local Nusselt number are computed. The significant outcomes of the study are that the velocity decreases when the radiation parameter $$R_{d}$$ R d is increased while the temperature profile is increased for higher values of radiation parameter $$R_{d}$$ R d in case of opposing flow, moreover, growth in Deborah number $$\beta_{2}$$ β 2 enhance the velocity and momentum boundary layer. The heat transfer rate is decrease due to magnetic strength but increase with the increased values of Prandtl and Deborah numbers. The results of this model are closely matched with the outputs available in the literature.
国家哲学社会科学文献中心版权所有