摘要:Air pollution causes hypertension, cardiovascular disease, and mortality. Asian dust (AD) reportedly induces asthma or acute myocardial infarction along with air pollution, but its impact on blood pressure (BP) is unknown. We investigated the association between short-term AD exposure and BP fluctuations in 300,952 individuals whose BP was measured during April 2005–March 2015 and divided them into AD and non-AD groups based on visitation for AD-related events. AD’s occurrence, air pollutants’ concentration (suspended particulate matter, SO2, NO2, photochemical oxidants), and meteorological variables (mean ambient temperature, relative humidity) were obtained from a monitoring station; AD events correlated with decreased visibility (< 10 km). We observed 61 AD days, with 3897 participants undergoing medical check-ups. Short-term AD exposure at lag day-0 was significantly associated with higher systolic BP (SBP), diastolic BP (DBP), and pulse rate (PR) risk (β = 1.85, 95% confidence interval (CI) 1.35–2.35 for SBP, β = 2.24, 95% CI 1.88–2.61 for DBP, β = 0.52, 95% CI 0.14–0.91 for PR) using multi-pollutant model. Population-attributable fractions exposed to AD were 11.5% for those with elevated SBP (SBP ≥ 120 mmHg) and 23.7% for those with hypertension (SBP ≥ 140 mmHg or DBP ≥ 90 mmHg). This study showed a strong association between short-term AD exposure and increased SBP and DBP.
其他摘要:Abstract Air pollution causes hypertension, cardiovascular disease, and mortality. Asian dust (AD) reportedly induces asthma or acute myocardial infarction along with air pollution, but its impact on blood pressure (BP) is unknown. We investigated the association between short-term AD exposure and BP fluctuations in 300,952 individuals whose BP was measured during April 2005–March 2015 and divided them into AD and non-AD groups based on visitation for AD-related events. AD’s occurrence, air pollutants’ concentration (suspended particulate matter, SO 2 , NO 2 , photochemical oxidants), and meteorological variables (mean ambient temperature, relative humidity) were obtained from a monitoring station; AD events correlated with decreased visibility (< 10 km). We observed 61 AD days, with 3897 participants undergoing medical check-ups. Short-term AD exposure at lag day-0 was significantly associated with higher systolic BP (SBP), diastolic BP (DBP), and pulse rate (PR) risk (β = 1.85, 95% confidence interval (CI) 1.35–2.35 for SBP, β = 2.24, 95% CI 1.88–2.61 for DBP, β = 0.52, 95% CI 0.14–0.91 for PR) using multi-pollutant model. Population-attributable fractions exposed to AD were 11.5% for those with elevated SBP (SBP ≥ 120 mmHg) and 23.7% for those with hypertension (SBP ≥ 140 mmHg or DBP ≥ 90 mmHg). This study showed a strong association between short-term AD exposure and increased SBP and DBP.