首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Simpler and effective radiological evaluations for modiolar proximity of a slim modiolar cochlear implant electrode
  • 本地全文:下载
  • 作者:Sang-Yeon Lee ; Jin Hee Han ; Marge Carandang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-74738-x
  • 出版社:Springer Nature
  • 摘要:A new slim modiolar electrode (CI532/632) has been reported to ensure better modiolar proximity than conventional electrodes. Better modiolar proximity has been proposed to yield better electrode discrimination capability and potentially better speech outcomes, necessitating its efficient measurement. Currently, intracochlear positional index (ICPI), the most reliable indicator for evaluating modiolar proximity, has been measured exclusively through ‘metal artifact-less’ cone beam CT. However, popular use of this index is precluded due to lack of cone beam CT in many institutions. Thus, eyes are now on elucidation of easy-to-measure indicators of modiolar proximity derived from conventional CT, which is accessible in all centers. We observed that enhanced tomographic resolution significantly reduces partial volume artifacts, providing better visualization of modiolus-electrode distance. Aided by ultra-high kernel specification with high-resolution index, we developed a novel and easy-to-measure, conventional CT-specific indicator, “modified ICPI”, for evaluation of modiolar proximity. Further, we showed that it closely correlates with the previously proposed parameter of modiolar proximity, the spiral diameter, measured from post-insertion radiograph, reiterating the value of X-ray-based spiral diameter. Through this study, we have taken a step toward the stage of immediate visual feedback regarding modiolar proximity and changes in insertion technique intraoperatively, ensuring optimal modiolar proximity.
  • 其他摘要:Abstract A new slim modiolar electrode (CI532/632) has been reported to ensure better modiolar proximity than conventional electrodes. Better modiolar proximity has been proposed to yield better electrode discrimination capability and potentially better speech outcomes, necessitating its efficient measurement. Currently, intracochlear positional index (ICPI), the most reliable indicator for evaluating modiolar proximity, has been measured exclusively through ‘metal artifact-less’ cone beam CT. However, popular use of this index is precluded due to lack of cone beam CT in many institutions. Thus, eyes are now on elucidation of easy-to-measure indicators of modiolar proximity derived from conventional CT, which is accessible in all centers. We observed that enhanced tomographic resolution significantly reduces partial volume artifacts, providing better visualization of modiolus-electrode distance. Aided by ultra-high kernel specification with high-resolution index, we developed a novel and easy-to-measure, conventional CT-specific indicator, “modified ICPI”, for evaluation of modiolar proximity. Further, we showed that it closely correlates with the previously proposed parameter of modiolar proximity, the spiral diameter, measured from post-insertion radiograph, reiterating the value of X-ray-based spiral diameter. Through this study, we have taken a step toward the stage of immediate visual feedback regarding modiolar proximity and changes in insertion technique intraoperatively, ensuring optimal modiolar proximity.
国家哲学社会科学文献中心版权所有