首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
  • 本地全文:下载
  • 作者:Hoheok Kim ; Junya Inoue ; Tadashi Kasuya
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-74935-8
  • 出版社:Springer Nature
  • 摘要:An efficient deep learning method is presented for distinguishing microstructures of a low carbon steel. There have been numerous endeavors to reproduce the human capability of perceptually classifying different textures using machine learning methods, but this is still very challenging owing to the need for a vast labeled image dataset. In this study, we introduce an unsupervised machine learning technique based on convolutional neural networks and a superpixel algorithm for the segmentation of a low-carbon steel microstructure without the need for labeled images. The effectiveness of the method is demonstrated with optical microscopy images of steel microstructures having different patterns taken at different resolutions. In addition, several evaluation criteria for unsupervised segmentation results are investigated along with the hyperparameter optimization.
  • 其他摘要:Abstract An efficient deep learning method is presented for distinguishing microstructures of a low carbon steel. There have been numerous endeavors to reproduce the human capability of perceptually classifying different textures using machine learning methods, but this is still very challenging owing to the need for a vast labeled image dataset. In this study, we introduce an unsupervised machine learning technique based on convolutional neural networks and a superpixel algorithm for the segmentation of a low-carbon steel microstructure without the need for labeled images. The effectiveness of the method is demonstrated with optical microscopy images of steel microstructures having different patterns taken at different resolutions. In addition, several evaluation criteria for unsupervised segmentation results are investigated along with the hyperparameter optimization.
国家哲学社会科学文献中心版权所有