首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla
  • 本地全文:下载
  • 作者:Michael Tessler ; Jean P. Gaffney ; Anderson G. Oliveira
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-73446-w
  • 出版社:Springer Nature
  • 摘要:Pyrosomes are tunicates in the phylum Chordata, which also contains vertebrates. Their gigantic blooms play important ecological and biogeochemical roles in oceans. Pyrosoma, meaning “fire-body”, derives from their brilliant bioluminescence. The biochemistry of this light production is unknown, but has been hypothesized to be bacterial in origin. We found that mixing coelenterazine—a eukaryote-specific luciferin—with Pyrosoma atlanticum homogenate produced light. To identify the bioluminescent machinery, we sequenced P. atlanticum transcriptomes and found a sequence match to a cnidarian luciferase (RLuc). We expressed this novel luciferase (PyroLuc) and, combined with coelenterazine, it produced light. A similar gene was recently predicted from a bioluminescent brittle star, indicating that RLuc-like luciferases may have evolved convergently from homologous dehalogenases across phyla (Cnidaria, Echinodermata, and Chordata). This report indicates that a widespread gene may be able to functionally converge, resulting in bioluminescence across animal phyla, and describes and characterizes the first putative chordate luciferase.
  • 其他摘要:Abstract Pyrosomes are tunicates in the phylum Chordata, which also contains vertebrates. Their gigantic blooms play important ecological and biogeochemical roles in oceans. Pyrosoma , meaning “fire-body”, derives from their brilliant bioluminescence. The biochemistry of this light production is unknown, but has been hypothesized to be bacterial in origin. We found that mixing coelenterazine—a eukaryote-specific luciferin—with Pyrosoma atlanticum homogenate produced light. To identify the bioluminescent machinery, we sequenced P. atlanticum transcriptomes and found a sequence match to a cnidarian luciferase (RLuc). We expressed this novel luciferase (PyroLuc) and, combined with coelenterazine, it produced light. A similar gene was recently predicted from a bioluminescent brittle star, indicating that RLuc-like luciferases may have evolved convergently from homologous dehalogenases across phyla (Cnidaria, Echinodermata, and Chordata). This report indicates that a widespread gene may be able to functionally converge, resulting in bioluminescence across animal phyla, and describes and characterizes the first putative chordate luciferase.
国家哲学社会科学文献中心版权所有