首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Towards optimal use of phosphorus fertiliser
  • 本地全文:下载
  • 作者:Mart B. H. Ros ; Gerwin F. Koopmans ; Kees Jan van Groenigen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-74736-z
  • 出版社:Springer Nature
  • 摘要:Because phosphorus (P) is one of the most limiting nutrients in agricultural systems, P fertilisation is essential to feed the world. However, declining P reserves demand far more effective use of this crucial resource. Here, we use meta-analysis to synthesize yield responses to P fertilisation in grasslands, the most common type of agricultural land, to identify under which conditions P fertilisation is most effective. Yield responses to P fertilisation were 40–100% higher in (a) tropical vs temperate regions; (b) grass/legume mixtures vs grass monocultures; and (c) soil pH of 5–6 vs other pHs. The agronomic efficiency of P fertilisation decreased for greater P application rates. Moreover, soils with low P availability reacted disproportionately strong to fertilisation. Hence, low fertiliser application rates to P-deficient soils result in stronger absolute yield benefits than high rates applied to soils with a higher P status. Overall, our results suggest that optimising P fertiliser use is key to sustainable intensification of agricultural systems.
  • 其他摘要:Abstract Because phosphorus (P) is one of the most limiting nutrients in agricultural systems, P fertilisation is essential to feed the world. However, declining P reserves demand far more effective use of this crucial resource. Here, we use meta-analysis to synthesize yield responses to P fertilisation in grasslands, the most common type of agricultural land, to identify under which conditions P fertilisation is most effective. Yield responses to P fertilisation were 40–100% higher in (a) tropical vs temperate regions; (b) grass/legume mixtures vs grass monocultures; and (c) soil pH of 5–6 vs other pHs. The agronomic efficiency of P fertilisation decreased for greater P application rates. Moreover, soils with low P availability reacted disproportionately strong to fertilisation. Hence, low fertiliser application rates to P-deficient soils result in stronger absolute yield benefits than high rates applied to soils with a higher P status. Overall, our results suggest that optimising P fertiliser use is key to sustainable intensification of agricultural systems.
国家哲学社会科学文献中心版权所有