首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Formation of spherical Sn particles by reducing SnO 2 film in floating wire-assisted H 2 /Ar plasma at atmospheric pressure
  • 本地全文:下载
  • 作者:Thi-Thuy-Nga Nguyen ; Minoru Sasaki ; Takayoshi Tsutsumi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-74663-z
  • 出版社:Springer Nature
  • 摘要:A green method to synthesize spherical Sn particles by reducing SnO2 film in atmospheric-pressure H2/Ar plasma at low temperatures for various applications is presented. The floating wire-assisted remotely-generated plasma with a mixture of 0.05% H2/Ar gas formed spherical metallic Sn particles by reducing a SnO2 layer on glass substrate. During the reduction process, H radical density was measured by using vacuum ultraviolet absorption spectroscopy, and plasma properties including electron density and gas temperature were diagnosed by optical emission spectroscopy. The inductively coupled generated plasma with a high electron density of 1014 cm−3, a hydrogen atom density of 1014 cm−3, and a gas temperature of 940 K was obtained at a remote region distance of 150 mm where the SnO2/glass substrate was placed for plasma treatment. The process has been modeled on the spherical Sn formation based on the reduction of SnO2 films using H radicals. Depending on the treatment condition, the total reduction area, where spherical Sn particles formed, was enlarged and could reach 300 mm2 after 2 min. The substrate temperature affected the expansion rate of the total reduction area and the growth of the Sn spheres.
  • 其他摘要:Abstract A green method to synthesize spherical Sn particles by reducing SnO 2 film in atmospheric-pressure H 2 /Ar plasma at low temperatures for various applications is presented. The floating wire-assisted remotely-generated plasma with a mixture of 0.05% H 2 /Ar gas formed spherical metallic Sn particles by reducing a SnO 2 layer on glass substrate. During the reduction process, H radical density was measured by using vacuum ultraviolet absorption spectroscopy, and plasma properties including electron density and gas temperature were diagnosed by optical emission spectroscopy. The inductively coupled generated plasma with a high electron density of 10 14  cm −3 , a hydrogen atom density of 10 14  cm −3 , and a gas temperature of 940 K was obtained at a remote region distance of 150 mm where the SnO 2 /glass substrate was placed for plasma treatment. The process has been modeled on the spherical Sn formation based on the reduction of SnO 2 films using H radicals. Depending on the treatment condition, the total reduction area, where spherical Sn particles formed, was enlarged and could reach 300 mm 2 after 2 min. The substrate temperature affected the expansion rate of the total reduction area and the growth of the Sn spheres.
国家哲学社会科学文献中心版权所有