首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:A digital PCR system based on the thermal cycled chip with multi helix winding capillary
  • 本地全文:下载
  • 作者:Bin Li ; Yuanming Li ; Yangyang Jiang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-74711-8
  • 出版社:Springer Nature
  • 摘要:This paper presents a digital PCR system based on a novel thermal cycled chip, which wraps microchannels on a trapezoidal structure made of polydimethylsiloxane (PDMS) in a multi-helix manner for the first time. It is found that compared to the single helix chip commonly used in previous reports, this kind of novel multi-helix chip can make the surface temperature in the renaturation zone more uniform, and even in the case of rapid fluid flow, it can improve the efficiency of the polymerase chain reaction. What’s more, the winding method of multi helix (such as double helix, six helix and eight helix) can obtain better temperature uniformity than the winding of odd helix (such as single helix and three helix). As a proof of concept, the temperature-optimized double-helical chip structure is applied to continuous-flow digital PCR and there is no need to add any surfactant to both the oil phase and reagent. In addition, we successfully analyzed the fluorescence signal of continuous-flow digital PCR by using CMOS camera. Finally, this method is applied for the absolute quantification of the clinical serum sample infected by HBV. The accuracy of the test results has been confirmed by commercial instruments.
  • 其他摘要:Abstract This paper presents a digital PCR system based on a novel thermal cycled chip, which wraps microchannels on a trapezoidal structure made of polydimethylsiloxane (PDMS) in a multi-helix manner for the first time. It is found that compared to the single helix chip commonly used in previous reports, this kind of novel multi-helix chip can make the surface temperature in the renaturation zone more uniform, and even in the case of rapid fluid flow, it can improve the efficiency of the polymerase chain reaction. What’s more, the winding method of multi helix (such as double helix, six helix and eight helix) can obtain better temperature uniformity than the winding of odd helix (such as single helix and three helix). As a proof of concept, the temperature-optimized double-helical chip structure is applied to continuous-flow digital PCR and there is no need to add any surfactant to both the oil phase and reagent. In addition, we successfully analyzed the fluorescence signal of continuous-flow digital PCR by using CMOS camera. Finally, this method is applied for the absolute quantification of the clinical serum sample infected by HBV. The accuracy of the test results has been confirmed by commercial instruments.
国家哲学社会科学文献中心版权所有