首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Synthesis, in vitro, and in vivo evaluation of novel N -phenylindazolyl diarylureas as potential anti-cancer agents
  • 本地全文:下载
  • 作者:Lucas N. Solano ; Grady L. Nelson ; Conor T. Ronayne
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-74572-1
  • 出版社:Springer Nature
  • 摘要:Novel N-phenylindazole based diarylureas have been designed, synthesized and evaluated as potential anticancer agents. In vitro cell viability studies of these derivatives illustrate good potency with IC50 values in the range of 0.4–50 μM in several cancer cell lines including murine metastatic breast cancer 4T1, murine glioblastoma GL261, human triple negative breast cancer MDA-MB-231, human pancreatic cancer MIAPaCa-2, and human colorectal cancer cell line WiDr. The ester group in the lead compound 8i was modified to incorporate amino-amides to increase solubility and stability while retaining biological activity. Further in vitro studies reveal that lead candidates inhibit tube length in HUVEC cells. In vivo systemic toxicity studies indicate that these candidate compounds are well tolerated in mice without any significant side effects. Anticancer efficacy studies in WiDr tumor xenograft and 4T1 tumor syngraft models demonstrate that the lead candidate 11 exhibits significant antitumor properties as a single agent in these tumor models.
  • 其他摘要:Abstract Novel N -phenylindazole based diarylureas have been designed, synthesized and evaluated as potential anticancer agents. In vitro cell viability studies of these derivatives illustrate good potency with IC 50 values in the range of 0.4–50 μM in several cancer cell lines including murine metastatic breast cancer 4T1, murine glioblastoma GL261, human triple negative breast cancer MDA-MB-231, human pancreatic cancer MIAPaCa-2, and human colorectal cancer cell line WiDr. The ester group in the lead compound 8i was modified to incorporate amino-amides to increase solubility and stability while retaining biological activity. Further in vitro studies reveal that lead candidates inhibit tube length in HUVEC cells. In vivo systemic toxicity studies indicate that these candidate compounds are well tolerated in mice without any significant side effects. Anticancer efficacy studies in WiDr tumor xenograft and 4T1 tumor syngraft models demonstrate that the lead candidate 11 exhibits significant antitumor properties as a single agent in these tumor models.
国家哲学社会科学文献中心版权所有