摘要:In face-to-face communication, audio-visual (AV) stimuli can be fused, combined or perceived as mismatching. While the left superior temporal sulcus (STS) is presumably the locus of AV integration, the process leading to combination is unknown. Based on previous modelling work, we hypothesize that combination results from a complex dynamic originating in a failure to integrate AV inputs, followed by a reconstruction of the most plausible AV sequence. In two different behavioural tasks and one MEG experiment, we observed that combination is more time demanding than fusion. Using time-/source-resolved human MEG analyses with linear and dynamic causal models, we show that both fusion and combination involve early detection of AV incongruence in the STS, whereas combination is further associated with enhanced activity of AV asynchrony-sensitive regions (auditory and inferior frontal cortices). Based on neural signal decoding, we finally show that only combination can be decoded from the IFG activity and that combination is decoded later than fusion in the STS. These results indicate that the AV speech integration outcome primarily depends on whether the STS converges or not onto an existing multimodal syllable representation, and that combination results from subsequent temporal processing, presumably the off-line re-ordering of incongruent AV stimuli.
其他摘要:Abstract In face-to-face communication, audio-visual (AV) stimuli can be fused, combined or perceived as mismatching. While the left superior temporal sulcus (STS) is presumably the locus of AV integration, the process leading to combination is unknown. Based on previous modelling work, we hypothesize that combination results from a complex dynamic originating in a failure to integrate AV inputs, followed by a reconstruction of the most plausible AV sequence. In two different behavioural tasks and one MEG experiment, we observed that combination is more time demanding than fusion . Using time-/source-resolved human MEG analyses with linear and dynamic causal models, we show that both fusion and combination involve early detection of AV incongruence in the STS, whereas combination is further associated with enhanced activity of AV asynchrony-sensitive regions (auditory and inferior frontal cortices). Based on neural signal decoding, we finally show that only combination can be decoded from the IFG activity and that combination is decoded later than fusion in the STS. These results indicate that the AV speech integration outcome primarily depends on whether the STS converges or not onto an existing multimodal syllable representation, and that combination results from subsequent temporal processing, presumably the off-line re-ordering of incongruent AV stimuli.