首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Interface-exfoliated graphene-based conductive screen-printing inks: low-loading, low-cost, and additive-free
  • 本地全文:下载
  • 作者:Feiyang Chen ; Deepthi Varghese ; Sean T. McDermott
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-74821-3
  • 出版社:Springer Nature
  • 摘要:Paper diagnostics are of growing interest due to their low cost and easy accessibility. Conductive inks, necessary for manufacturing the next generation diagnostic devices, currently face challenges such as high cost, high sintering temperatures, or harsh conditions required to remove stabilizers. Here we report an effective, inexpensive, and environmentally friendly approach to graphene ink that is suitable for screen printing onto paper substrates. The ink formulation contains only pristine graphite, water, and non-toxic alkanes formed by an interfacial trapping method in which graphite spontaneously exfoliates to graphene. The result is a viscous graphene stabilized water-in-oil emulsion-based ink. This ink does not require sintering, but drying at 90 °C or brief microwaving can improve the conductivity. The production requires only 40 s of shaking to form the emulsion. The sheet resistance of the ink is approximately 600 Ω/sq at a thickness of less than 6 µm, and the ink can be stabilized by as little as 1 wt% graphite.
  • 其他摘要:Abstract Paper diagnostics are of growing interest due to their low cost and easy accessibility. Conductive inks, necessary for manufacturing the next generation diagnostic devices, currently face challenges such as high cost, high sintering temperatures, or harsh conditions required to remove stabilizers. Here we report an effective, inexpensive, and environmentally friendly approach to graphene ink that is suitable for screen printing onto paper substrates. The ink formulation contains only pristine graphite, water, and non-toxic alkanes formed by an interfacial trapping method in which graphite spontaneously exfoliates to graphene. The result is a viscous graphene stabilized water-in-oil emulsion-based ink. This ink does not require sintering, but drying at 90 °C or brief microwaving can improve the conductivity. The production requires only 40 s of shaking to form the emulsion. The sheet resistance of the ink is approximately 600 Ω/sq at a thickness of less than 6 µm, and the ink can be stabilized by as little as 1 wt% graphite.
国家哲学社会科学文献中心版权所有