首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Mesoscale structures in amorphous silks from a spider’s orb-web
  • 本地全文:下载
  • 作者:Christian Riekel ; Manfred Burghammer ; Martin Rosenthal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-74638-0
  • 出版社:Springer Nature
  • 摘要:Of the 7–8 silk fibers making up an orb-web only the hierarchical structural organization of semicrystalline radial fibers -composed of major ampullate silk- has been studied in detail, given its fascinating mechanical features. While major ampullate silk’s nanofibrillar morphology is well established, knowhow on mesoscale (> 50–100 nm) assembly and its contribution to mechanical performance is limited. Much less is known on the hierarchical structural organization of other, generally less crystalline fibers contributing to an orb-webs’ function. Here we show by scanning X-ray micro&nanodiffraction that two fully amorphous, fine silk fibers from the center of an orb-web have different mesoscale features. One of the fibers has a fibrillar composite structure resembling stiff egg case silk. The other fiber has a skin–core structure based on a nanofibrillar ribbon wound around a disordered core. A fraction of nanofibrils appears to have assembled into mesoscale fibrils. This fiber becomes readily attached to the coat of major ampullate silk fibers. We observe that a detached fiber has ripped out the glycoprotein skin-layer containing polyglycine II nanocrystallites. The anchoring of the fiber in the coat suggests that it could serve for strengthening the tension and cohesion of major ampullate silk fibers.
  • 其他摘要:Abstract Of the 7–8 silk fibers making up an orb-web only the hierarchical structural organization of semicrystalline radial fibers -composed of major ampullate silk- has been studied in detail, given its fascinating mechanical features. While major ampullate silk’s nanofibrillar morphology is well established, knowhow on mesoscale (> 50–100 nm) assembly and its contribution to mechanical performance is limited. Much less is known on the hierarchical structural organization of other, generally less crystalline fibers contributing to an orb-webs’ function. Here we show by scanning X-ray micro&nanodiffraction that two fully amorphous, fine silk fibers from the center of an orb-web have different mesoscale features. One of the fibers has a fibrillar composite structure resembling stiff egg case silk. The other fiber has a skin–core structure based on a nanofibrillar ribbon wound around a disordered core. A fraction of nanofibrils appears to have assembled into mesoscale fibrils. This fiber becomes readily attached to the coat of major ampullate silk fibers. We observe that a detached fiber has ripped out the glycoprotein skin-layer containing polyglycine II nanocrystallites. The anchoring of the fiber in the coat suggests that it could serve for strengthening the tension and cohesion of major ampullate silk fibers.
国家哲学社会科学文献中心版权所有