首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Electrocorticographic patterns dominated by low-frequency waves in camphor-induced seizures
  • 本地全文:下载
  • 作者:Luan Oliveira Ferreira ; Rafael Dias de Souza ; Fabrício de Araújo Silva
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-75309-w
  • 出版社:Springer Nature
  • 摘要:Camphor is an aromatic terpene compound found in the essential oils of many plants, which has been used for centuries as a herbal medicine, especially in children. However, many studies have shown that camphor may have major side effects, including neurological manifestation, such as seizures. In the present study, we investigated the electrocorticographic patterns of seizures induced by camphor in male adult Wistar rats. Each rat received 400 mg/kg (i.p.) of camphor prior to monitoring by electrocorticography. The application of camphor resulted a rapid evolution to seizure and marked changes in the electrocorticographic readings, which presented characteristics of epileptiform activity, with an increase in the total power wave. The decomposition of the cerebral waves revealed an increase in the delta and theta waves. The analysis of the camphor traces revealed severe ictal activity marked by an increase in the polyspike wave. Our data thus indicate that camphor may cause seizures, leading to tonic–clonic seizures. Clearly, further studies are necessary to better elucidate the mechanisms through which camphor acts on the brain, and to propose potential treatments with anticonvulsant drugs that are effective for the control of the seizures.
  • 其他摘要:Abstract Camphor is an aromatic terpene compound found in the essential oils of many plants, which has been used for centuries as a herbal medicine, especially in children. However, many studies have shown that camphor may have major side effects, including neurological manifestation, such as seizures. In the present study, we investigated the electrocorticographic patterns of seizures induced by camphor in male adult Wistar rats. Each rat received 400 mg/kg (i.p.) of camphor prior to monitoring by electrocorticography. The application of camphor resulted a rapid evolution to seizure and marked changes in the electrocorticographic readings, which presented characteristics of epileptiform activity, with an increase in the total power wave. The decomposition of the cerebral waves revealed an increase in the delta and theta waves. The analysis of the camphor traces revealed severe ictal activity marked by an increase in the polyspike wave. Our data thus indicate that camphor may cause seizures, leading to tonic–clonic seizures. Clearly, further studies are necessary to better elucidate the mechanisms through which camphor acts on the brain, and to propose potential treatments with anticonvulsant drugs that are effective for the control of the seizures.
国家哲学社会科学文献中心版权所有