摘要:On 3 July 2015, the Mw 6.5 Pishan earthquake occurred at the junction of the southwestern margin of the Tarim Basin and the northwestern margin of the Tibetan Plateau. To understand the seismogenic mechanism and the post-seismic deformation behavior, we investigated the characteristics of the post-seismic deformation fields in the seismic area, using 9 Sentinel-1A TOPS synthetic aperture radar (SAR) images acquired from 18 July 2015 to 22 September 2016 with the Small Baseline Subset Interferometric SAR (SBAS-InSAR) technique. Postseismic LOS deformation displayed logarithmic behavior, and the temporal evolution of the post-seismic deformation is consistent with the aftershock sequence. The main driving mechanism of near-field post-seismic displacement was most likely to be afterslip on the fault and the entire creep process consists of three creeping stages. Afterward, we used the steepest descent method to invert the afterslip evolution process and analyzed the relationship between post-seismic afterslip and co-seismic slip. The results witness that 447 days after the mainshock (22 September 2016), the afterslip was concentrated within one principal slip center. It was located 5–25 km along the fault strike, 0–10 km along with the fault dip, with a cumulative peak slip of 0.18 m. The 447 days afterslip seismic moment was approximately 2.65 × 1017 N m, accounting for approximately 4.1% of the co-seismic geodetic moment. The deep afterslip revealed that a creeping process from steady-state “secondary” creeping to accelerating “tertiary” creep in the deep of fault. The future seismic hazard deserves further attention and research.
其他摘要:Abstract On 3 July 2015, the Mw 6.5 Pishan earthquake occurred at the junction of the southwestern margin of the Tarim Basin and the northwestern margin of the Tibetan Plateau. To understand the seismogenic mechanism and the post-seismic deformation behavior, we investigated the characteristics of the post-seismic deformation fields in the seismic area, using 9 Sentinel-1A TOPS synthetic aperture radar (SAR) images acquired from 18 July 2015 to 22 September 2016 with the Small Baseline Subset Interferometric SAR (SBAS-InSAR) technique. Postseismic LOS deformation displayed logarithmic behavior, and the temporal evolution of the post-seismic deformation is consistent with the aftershock sequence. The main driving mechanism of near-field post-seismic displacement was most likely to be afterslip on the fault and the entire creep process consists of three creeping stages. Afterward, we used the steepest descent method to invert the afterslip evolution process and analyzed the relationship between post-seismic afterslip and co-seismic slip. The results witness that 447 days after the mainshock (22 September 2016), the afterslip was concentrated within one principal slip center. It was located 5–25 km along the fault strike, 0–10 km along with the fault dip, with a cumulative peak slip of 0.18 m. The 447 days afterslip seismic moment was approximately 2.65 × 10 17 N m, accounting for approximately 4.1% of the co-seismic geodetic moment. The deep afterslip revealed that a creeping process from steady-state “secondary” creeping to accelerating “tertiary” creep in the deep of fault. The future seismic hazard deserves further attention and research.