首页    期刊浏览 2025年06月10日 星期二
登录注册

文章基本信息

  • 标题:ERgene: Python library for screening endogenous reference genes
  • 本地全文:下载
  • 作者:Zehua Zeng ; Yuzhe Xiong ; Wenhuan Guo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-020-75586-5
  • 出版社:Springer Nature
  • 摘要:In gene expression analysis, sample differences and experimental operation differences are common, but sometimes, these differences will cause serious errors to the results or even make the results meaningless. Finding suitable internal reference genes efficiently to eliminate errors is a challenge. Aside from the need for high efficiency, there is no package for screening endogenous genes available in Python. Here, we introduce ERgene, a Python library for screening endogenous reference genes. It has extremely high computational efficiency and simple operation steps. The principle is based on the inverse process of the internal reference method, and the robust matrix block operation makes the selection of internal reference genes faster than any other method.
  • 其他摘要:Abstract In gene expression analysis, sample differences and experimental operation differences are common, but sometimes, these differences will cause serious errors to the results or even make the results meaningless. Finding suitable internal reference genes efficiently to eliminate errors is a challenge. Aside from the need for high efficiency, there is no package for screening endogenous genes available in Python. Here, we introduce ERgene, a Python library for screening endogenous reference genes. It has extremely high computational efficiency and simple operation steps. The principle is based on the inverse process of the internal reference method, and the robust matrix block operation makes the selection of internal reference genes faster than any other method.
国家哲学社会科学文献中心版权所有