首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:The influence of afferent input on somatosensory suppression during grasping
  • 本地全文:下载
  • 作者:Maximilian Davide Broda ; Katja Fiehler ; Dimitris Voudouris
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-75610-8
  • 出版社:Springer Nature
  • 摘要:The processing of somatosensory information is hampered on a moving limb. This suppression has been widely attributed to sensorimotor predictions that suppress the associated feedback, though postdictive mechanisms are also involved. Here, we investigated the extent to which suppression on a limb is influenced by backward somatosensory signals, such as afferents associated with forces that this limb applies. Participants grasped and lifted objects of symmetric and asymmetric mass distributions using a precision grip. We probed somatosensory processing at the moment of the grasp by presenting a vibrotactile stimulus either on the thumb or index finger and asked participants to report if they felt this stimulus. Participants applied greater forces with the thumb and index finger for objects loaded to the thumb’s or index finger’s endpoint, respectively. However, suppression was not influenced by the different applied forces. Suppression on the digits remained constant both when grasping heavier objects, and thus applying even greater forces, and when probing suppression on the skin over the muscle that controlled force application. These results support the idea that somatosensory suppression is predictive in nature while backward masking may only play a minor role in somatosensory processing on the moving hand, at least in this context.
  • 其他摘要:Abstract The processing of somatosensory information is hampered on a moving limb. This suppression has been widely attributed to sensorimotor predictions that suppress the associated feedback, though postdictive mechanisms are also involved. Here, we investigated the extent to which suppression on a limb is influenced by backward somatosensory signals, such as afferents associated with forces that this limb applies. Participants grasped and lifted objects of symmetric and asymmetric mass distributions using a precision grip. We probed somatosensory processing at the moment of the grasp by presenting a vibrotactile stimulus either on the thumb or index finger and asked participants to report if they felt this stimulus. Participants applied greater forces with the thumb and index finger for objects loaded to the thumb’s or index finger’s endpoint, respectively. However, suppression was not influenced by the different applied forces. Suppression on the digits remained constant both when grasping heavier objects, and thus applying even greater forces, and when probing suppression on the skin over the muscle that controlled force application. These results support the idea that somatosensory suppression is predictive in nature while backward masking may only play a minor role in somatosensory processing on the moving hand, at least in this context.
国家哲学社会科学文献中心版权所有