首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:An extreme-phenotype genome‐wide association study identifies candidate cannabinoid pathway genes in Cannabis
  • 本地全文:下载
  • 作者:Matthew T. Welling ; Lei Liu ; Tobias Kretzschmar
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-75271-7
  • 出版社:Springer Nature
  • 摘要:Cannabis produces a class of isoprenylated resorcinyl polyketides known as cannabinoids, a subset of which are medically important and exclusive to this plant. The cannabinoid alkyl group is a critical structural feature that governs therapeutic activity. Genetic enhancement of the alkyl side-chain could lead to the development of novel chemical phenotypes (chemotypes) for pharmaceutical end-use. However, the genetic determinants underlying in planta variation of cannabinoid alkyl side-chain length remain uncharacterised. Using a diversity panel derived from the Ecofibre Cannabis germplasm collection, an extreme-phenotype genome-wide association study (XP-GWAS) was used to enrich for alkyl cannabinoid polymorphic regions. Resequencing of chemotypically extreme pools revealed a known cannabinoid synthesis pathway locus as well as a series of chemotype-associated genomic regions. One of these regions contained a candidate gene encoding a β-keto acyl carrier protein (ACP) reductase (BKR) putatively associated with polyketide fatty acid starter unit synthesis and alkyl side-chain length. Association analysis revealed twenty-two polymorphic variants spanning the length of this gene, including two nonsynonymous substitutions. The success of this first reported application of XP-GWAS for an obligate outcrossing and highly heterozygote plant genus suggests that this approach may have generic application for other plant species.
  • 其他摘要:Abstract Cannabis produces a class of isoprenylated resorcinyl polyketides known as cannabinoids, a subset of which are medically important and exclusive to this plant. The cannabinoid alkyl group is a critical structural feature that governs therapeutic activity. Genetic enhancement of the alkyl side-chain could lead to the development of novel chemical phenotypes (chemotypes) for pharmaceutical end-use. However, the genetic determinants underlying in planta variation of cannabinoid alkyl side-chain length remain uncharacterised. Using a diversity panel derived from the Ecofibre Cannabis germplasm collection, an extreme-phenotype genome-wide association study (XP-GWAS) was used to enrich for alkyl cannabinoid polymorphic regions. Resequencing of chemotypically extreme pools revealed a known cannabinoid synthesis pathway locus as well as a series of chemotype-associated genomic regions. One of these regions contained a candidate gene encoding a β-keto acyl carrier protein (ACP) reductase (BKR) putatively associated with polyketide fatty acid starter unit synthesis and alkyl side-chain length. Association analysis revealed twenty-two polymorphic variants spanning the length of this gene, including two nonsynonymous substitutions. The success of this first reported application of XP-GWAS for an obligate outcrossing and highly heterozygote plant genus suggests that this approach may have generic application for other plant species.
国家哲学社会科学文献中心版权所有