首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Subtilase cytotoxin induces a novel form of Lipocalin 2, which promotes Shiga-toxigenic Escherichia coli survival
  • 本地全文:下载
  • 作者:Kinnosuke Yahiro ; Kohei Ogura ; Yoshiyuki Goto
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-15
  • DOI:10.1038/s41598-020-76027-z
  • 出版社:Springer Nature
  • 摘要:Shiga-toxigenic Escherichia coli (STEC) infection causes severe bloody diarrhea, renal failure, and hemolytic uremic syndrome. Recent studies showed global increases in Locus for Enterocyte Effacement (LEE)-negative STEC infection. Some LEE-negative STEC produce Subtilase cytotoxin (SubAB), which cleaves endoplasmic reticulum (ER) chaperone protein BiP, inducing ER stress and apoptotic cell death. In this study, we report that SubAB induces expression of a novel form of Lipocalin-2 (LCN2), and describe its biological activity and effects on apoptotic cell death. SubAB induced expression of a novel LCN2, which was regulated by PRKR-like endoplasmic reticulum kinase via the C/EBP homologous protein pathway. SubAB-induced novel-sized LCN2 was not secreted into the culture supernatant. Increased intracellular iron level by addition of holo-transferrin or FeCl3 suppressed SubAB-induced PARP cleavage. Normal-sized FLAG-tagged LCN2 suppressed STEC growth, but this effect was not seen in the presence of SubAB- or tunicamycin-induced unglycosylated FLAG-tagged LCN2. Our study demonstrates that SubAB-induced novel-sized LCN2 does not have anti-STEC activity, suggesting that SubAB plays a crucial role in the survival of LEE-negative STEC as well as inducing apoptosis of the host cells.
  • 其他摘要:Abstract Shiga-toxigenic Escherichia coli (STEC) infection causes severe bloody diarrhea, renal failure, and hemolytic uremic syndrome. Recent studies showed global increases in Locus for Enterocyte Effacement (LEE)-negative STEC infection. Some LEE-negative STEC produce Subtilase cytotoxin (SubAB), which cleaves endoplasmic reticulum (ER) chaperone protein BiP, inducing ER stress and apoptotic cell death. In this study, we report that SubAB induces expression of a novel form of Lipocalin-2 (LCN2), and describe its biological activity and effects on apoptotic cell death. SubAB induced expression of a novel LCN2, which was regulated by PRKR-like endoplasmic reticulum kinase via the C/EBP homologous protein pathway. SubAB-induced novel-sized LCN2 was not secreted into the culture supernatant. Increased intracellular iron level by addition of holo-transferrin or FeCl 3 suppressed SubAB-induced PARP cleavage. Normal-sized FLAG-tagged LCN2 suppressed STEC growth, but this effect was not seen in the presence of SubAB- or tunicamycin-induced unglycosylated FLAG-tagged LCN2. Our study demonstrates that SubAB-induced novel-sized LCN2 does not have anti-STEC activity, suggesting that SubAB plays a crucial role in the survival of LEE-negative STEC as well as inducing apoptosis of the host cells.
国家哲学社会科学文献中心版权所有