首页    期刊浏览 2024年08月21日 星期三
登录注册

文章基本信息

  • 标题:Robust, universal, and persistent bud secretion adhesion in horse-chestnut trees
  • 本地全文:下载
  • 作者:Dagmar Voigt ; Jaekang Kim ; Anne Jantschke
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-74029-5
  • 出版社:Springer Nature
  • 摘要:Buds of horse-chestnut trees are covered with a viscous fluid, which remains sticky after long-term exposure to heat, frost, radiation, precipitation, deposition of aerosols and particles, attacks by microbes and arthropods. The present study demonstrates that the secretion does not dry out under arid conditions, not melt at 50 °C, and not change significantly under UV radiation or frost at a microscopic level. It is slightly swellable under wet conditions; and, it universally wets and adheres to substrates having different polarities. Measured pull-off forces do not differ between hydrophilic and lipophilic surfaces, ranging between 58 and 186 mN, and resulting in an adhesive strength up to 204 kPa. The mechanical and chemical properties of secretion resemble those of pressure-sensitive adhesives. The Raman, infrared, and nuclear magnetic resonance spectra show the clear presence of saturated aliphatic hydrocarbons, esters, free carboxylic acids, as well as minor amounts of amides and aromatic compounds. We suggest a multi-component material (aliphatic hydrocarbon resin), including alkanes, fatty acids, amides, and tackifying terpenoids embedded in a fluid matrix (fatty acids) comprising nonpolar and polar portions serving the universal and robust adhesive properties. These characteristics matter for ecological-evolutionary aspects and can inspire innovative designs of multifunctional, biomimetic pressure-sensitive adhesives and varnishes.
  • 其他摘要:Abstract Buds of horse-chestnut trees are covered with a viscous fluid, which remains sticky after long-term exposure to heat, frost, radiation, precipitation, deposition of aerosols and particles, attacks by microbes and arthropods. The present study demonstrates that the secretion does not dry out under arid conditions, not melt at 50 °C, and not change significantly under UV radiation or frost at a microscopic level. It is slightly swellable under wet conditions; and, it universally wets and adheres to substrates having different polarities. Measured pull-off forces do not differ between hydrophilic and lipophilic surfaces, ranging between 58 and 186 mN, and resulting in an adhesive strength up to 204 kPa. The mechanical and chemical properties of secretion resemble those of pressure-sensitive adhesives. The Raman, infrared, and nuclear magnetic resonance spectra show the clear presence of saturated aliphatic hydrocarbons, esters, free carboxylic acids, as well as minor amounts of amides and aromatic compounds. We suggest a multi-component material (aliphatic hydrocarbon resin), including alkanes, fatty acids, amides, and tackifying terpenoids embedded in a fluid matrix (fatty acids) comprising nonpolar and polar portions serving the universal and robust adhesive properties. These characteristics matter for ecological-evolutionary aspects and can inspire innovative designs of multifunctional, biomimetic pressure-sensitive adhesives and varnishes.
国家哲学社会科学文献中心版权所有