首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Hic-5 is required for activation of pancreatic stellate cells and development of pancreatic fibrosis in chronic pancreatitis
  • 本地全文:下载
  • 作者:Lin Gao ; Xiao-Feng Lei ; Aya Miyauchi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-76095-1
  • 出版社:Springer Nature
  • 摘要:Accumulated evidence suggests that activated pancreatic stellate cells (PSCs) serve as the main source of the extracellular matrix proteins accumulated under the pathological conditions leading to pancreatic fibrosis in chronic pancreatitis (CP). However, little is known about the mechanisms of PSC activation. PSCs have morphologic and functional similarities to hepatic stellate cells, which are activated by hydrogen peroxide-inducible clone-5 (Hic-5), a TGF-β1-induced protein. In this study, we investigated whether Hic-5 activates PSCs, which promote pancreatic fibrosis development in CP. Hic-5-knockout and wild type mice were subjected to caerulein injection to induce CP. Hic-5 expression was strongly upregulated in activated PSCs from human CP tissue and from mouse pancreatic fibrosis in caerulein-induced CP. Hic-5 deficiency significantly attenuated mouse pancreatic fibrosis and PSC activation in the experimental murine CP model. Mechanistically, Hic-5 knock down significantly inhibited the TGF-β/Smad2 signaling pathway, resulting in reduced collagen production and α-smooth muscle actin expression in the activated PSCs. Taken together, we propose Hic-5 as a potential marker of activated PSCs and a novel therapeutic target in CP treatment.
  • 其他摘要:Abstract Accumulated evidence suggests that activated pancreatic stellate cells (PSCs) serve as the main source of the extracellular matrix proteins accumulated under the pathological conditions leading to pancreatic fibrosis in chronic pancreatitis (CP). However, little is known about the mechanisms of PSC activation. PSCs have morphologic and functional similarities to hepatic stellate cells, which are activated by hydrogen peroxide-inducible clone-5 (Hic-5), a TGF-β1-induced protein. In this study, we investigated whether Hic-5 activates PSCs, which promote pancreatic fibrosis development in CP. Hic-5 -knockout and wild type mice were subjected to caerulein injection to induce CP. Hic-5 expression was strongly upregulated in activated PSCs from human CP tissue and from mouse pancreatic fibrosis in caerulein-induced CP. Hic-5 deficiency significantly attenuated mouse pancreatic fibrosis and PSC activation in the experimental murine CP model. Mechanistically, Hic-5 knock down significantly inhibited the TGF-β/Smad2 signaling pathway, resulting in reduced collagen production and α-smooth muscle actin expression in the activated PSCs. Taken together, we propose Hic-5 as a potential marker of activated PSCs and a novel therapeutic target in CP treatment.
国家哲学社会科学文献中心版权所有