首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Morphological and physicochemical diversity of snow algae from Alaska
  • 本地全文:下载
  • 作者:Marta J. Fiołka ; Nozomu Takeuchi ; Weronika Sofińska-Chmiel
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-18
  • DOI:10.1038/s41598-020-76215-x
  • 出版社:Springer Nature
  • 摘要:Snow algae are photosynthetic microbes growing in thawing snow. They usually show various morphological cell types. The aim of this study was to carry out microscopic and spectroscopic analysis of different forms of cells of snow algae collected on glaciers in Alaska. Four different shapes of algal cells were observed with the use of bright field LM (Light Microscopy), DIC (Differential Interference Contrast), EDF (Extended Depth Focus), fluorescence microscopy, and SEM (Scanning Electron Microscopy). The cells exhibited the strongest autofluorescence after the exposure to 365-nm excitation light, and the intensity differed among the cell types. Zygotes (cysts) showed the most intense fluorescence. Acridine orange staining revealed the acid nature of the algal cells. The use of Congo red and Calcofluor white fluorochromes indicated differences in the structure of polysaccharides in the cell wall in the individual types of algal cells. FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed the presence of polysaccharides not only in the algal cells but also in the fixative solution. The presence of polysaccharides in the extracellular algal fraction was confirmed by X-ray dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy imaging (SEM). The differences observed in the structure of the cell wall of the different forms of red snow algae prompt further analysis of this structure.
  • 其他摘要:Abstract Snow algae are photosynthetic microbes growing in thawing snow. They usually show various morphological cell types. The aim of this study was to carry out microscopic and spectroscopic analysis of different forms of cells of snow algae collected on glaciers in Alaska. Four different shapes of algal cells were observed with the use of bright field LM (Light Microscopy), DIC (Differential Interference Contrast), EDF (Extended Depth Focus), fluorescence microscopy, and SEM (Scanning Electron Microscopy). The cells exhibited the strongest autofluorescence after the exposure to 365-nm excitation light, and the intensity differed among the cell types. Zygotes (cysts) showed the most intense fluorescence. Acridine orange staining revealed the acid nature of the algal cells. The use of Congo red and Calcofluor white fluorochromes indicated differences in the structure of polysaccharides in the cell wall in the individual types of algal cells. FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed the presence of polysaccharides not only in the algal cells but also in the fixative solution. The presence of polysaccharides in the extracellular algal fraction was confirmed by X-ray dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy imaging (SEM). The differences observed in the structure of the cell wall of the different forms of red snow algae prompt further analysis of this structure.
国家哲学社会科学文献中心版权所有