首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Prediction of age and brachial-ankle pulse-wave velocity using ultra-wide-field pseudo-color images by deep learning
  • 本地全文:下载
  • 作者:Daisuke Nagasato ; Hitoshi Tabuchi ; Hiroki Masumoto
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-76513-4
  • 出版社:Springer Nature
  • 摘要:This study examined whether age and brachial-ankle pulse-wave velocity (baPWV) can be predicted with ultra-wide-field pseudo-color (UWPC) images using deep learning (DL). We examined 170 UWPC images of both eyes of 85 participants (40 men and 45 women, mean age: 57.5 ± 20.9 years). Three types of images were included (total, central, and peripheral) and analyzed by k-fold cross-validation (k = 5) using Visual Geometry Group-16. After bias was eliminated using the generalized linear mixed model, the standard regression coefficients (SRCs) between actual age and baPWV and predicted age and baPWV from the UWPC images by the neural network were calculated, and the prediction accuracies of the DL model for age and baPWV were examined. The SRC between actual age and predicted age by the neural network was 0.833 for all images, 0.818 for central images, and 0.649 for peripheral images (all P < 0.001) and between the actual baPWV and the predicted baPWV was 0.390 for total images, 0.419 for central images, and 0.312 for peripheral images (all P < 0.001). These results show the potential prediction capability of DL for age and vascular aging and could be useful for disease prevention and early treatment.
  • 其他摘要:Abstract This study examined whether age and brachial-ankle pulse-wave velocity (baPWV) can be predicted with ultra-wide-field pseudo-color (UWPC) images using deep learning (DL). We examined 170 UWPC images of both eyes of 85 participants (40 men and 45 women, mean age: 57.5 ± 20.9 years). Three types of images were included (total, central, and peripheral) and analyzed by k-fold cross-validation (k = 5) using Visual Geometry Group-16. After bias was eliminated using the generalized linear mixed model, the standard regression coefficients (SRCs) between actual age and baPWV and predicted age and baPWV from the UWPC images by the neural network were calculated, and the prediction accuracies of the DL model for age and baPWV were examined. The SRC between actual age and predicted age by the neural network was 0.833 for all images, 0.818 for central images, and 0.649 for peripheral images (all P  < 0.001) and between the actual baPWV and the predicted baPWV was 0.390 for total images, 0.419 for central images, and 0.312 for peripheral images (all P  < 0.001). These results show the potential prediction capability of DL for age and vascular aging and could be useful for disease prevention and early treatment.
国家哲学社会科学文献中心版权所有