首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Electrochemical alcohols oxidation mediated by N -hydroxyphthalimide on nickel foam surface
  • 本地全文:下载
  • 作者:Leila Behrouzi ; Robabeh Bagheri ; Mohammad Reza Mohammadi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-75397-8
  • 出版社:Springer Nature
  • 摘要:Alcohol to aldehyde conversion is a critical reaction in the industry. Herein, a new electrochemical method is introduced that converts 1 mmol of alcohols to aldehydes and ketones in the presence of N-hydroxyphthalimide (NHPI, 20 mol%) as a mediator; this conversion is achieved after 8.5 h at room temperature using a piece of Ni foam (1.0 cm2) and without adding an extra-base or a need for high temperature. Using this method, 10 mmol (1.08 g) of benzyl alcohol was also successfully oxidized to benzaldehyde (91%) without any by-products. This method was also used to oxidize other alcohols with high yield and selectivity. In the absence of a mediator, the surface of the nickel foam provided oxidation products at the lower yield. After the reaction was complete, nickel foam (anode) was characterized by a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and spectroelectrochemistry, which pointed to the formation of nickel oxide on the surface of the electrode. On the other hand, using other electrodes such as Pt, Cu, Fe, and graphite resulted in a low yield for the alcohol to aldehyde conversion.
  • 其他摘要:Abstract Alcohol to aldehyde conversion is a critical reaction in the industry. Herein, a new electrochemical method is introduced that converts 1 mmol of alcohols to aldehydes and ketones in the presence of N -hydroxyphthalimide (NHPI, 20 mol%) as a mediator; this conversion is achieved after 8.5 h at room temperature using a piece of Ni foam (1.0 cm 2 ) and without adding an extra-base or a need for high temperature. Using this method, 10 mmol (1.08 g) of benzyl alcohol was also successfully oxidized to benzaldehyde (91%) without any by-products. This method was also used to oxidize other alcohols with high yield and selectivity. In the absence of a mediator, the surface of the nickel foam provided oxidation products at the lower yield. After the reaction was complete, nickel foam (anode) was characterized by a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and spectroelectrochemistry, which pointed to the formation of nickel oxide on the surface of the electrode. On the other hand, using other electrodes such as Pt, Cu, Fe, and graphite resulted in a low yield for the alcohol to aldehyde conversion.
国家哲学社会科学文献中心版权所有