首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:In situ formation of photoactive B-ring reduced chlorophyll isomer in photosynthetic protein LH2
  • 本地全文:下载
  • 作者:Yoshitaka Saga ; Yuji Otsuka ; Daichi Funakoshi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-76540-1
  • 出版社:Springer Nature
  • 摘要:Natural chlorophylls have a D-ring reduced chlorin π-system; however, no naturally occurring photosynthetically active B-ring reduced chlorins have been reported. Here we report a B-ring reduced chlorin, 17,18-didehydro-bacteriochlorophyll (BChl) a, produced by in situ oxidation of B800 bacteriochlorophyll (BChl) a in a light-harvesting protein LH2 from a purple photosynthetic bacterium Phaeospirillum molischianum. The regioselective oxidation of the B-ring of B800 BChl a is rationalized by its molecular orientation in the protein matrix. The formation of 17,18-didehydro-BChl a produced no change in the local structures and circular arrangement of the LH2 protein. The B-ring reduced 17,18-didehydro-BChl a functions as an energy donor in the LH2 protein. The photoactive B-ring reduced Chl isomer in LH2 will be helpful for understanding the photofunction and evolution of photosynthetic cyclic tetrapyrrole pigments.
  • 其他摘要:Abstract Natural chlorophylls have a D-ring reduced chlorin π-system; however, no naturally occurring photosynthetically active B-ring reduced chlorins have been reported. Here we report a B-ring reduced chlorin, 17,18-didehydro-bacteriochlorophyll (BChl) a , produced by in situ oxidation of B800 bacteriochlorophyll (BChl) a in a light-harvesting protein LH2 from a purple photosynthetic bacterium Phaeospirillum molischianum . The regioselective oxidation of the B-ring of B800 BChl a is rationalized by its molecular orientation in the protein matrix. The formation of 17,18-didehydro-BChl a produced no change in the local structures and circular arrangement of the LH2 protein. The B-ring reduced 17,18-didehydro-BChl a functions as an energy donor in the LH2 protein. The photoactive B-ring reduced Chl isomer in LH2 will be helpful for understanding the photofunction and evolution of photosynthetic cyclic tetrapyrrole pigments.
国家哲学社会科学文献中心版权所有