首页    期刊浏览 2024年09月21日 星期六
登录注册

文章基本信息

  • 标题:Pyramidal metamaterial absorber for mode damping in microwave resonant structures
  • 本地全文:下载
  • 作者:Nassim Chikhi ; Andrea Passarelli ; Antonello Andreone
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-76433-3
  • 出版社:Springer Nature
  • 摘要:In many resonant structures the damping of parasitic or higher order modes is indispensable to guarantee a correct and stable performance. This is particularly true in the microwave region in case of cavities or other resonant systems operating in accelerating structures, where the mitigation of spurious resonance effects is mandatory to achieve high quality particle beams. We present the results on the mode suppression in a real pillbox cavity by inserting a properly designed pyramidal metamaterial that acts as light, small volume damper for specific resonances in the range 3–4 GHz, only slightly perturbing other intrinsic modes. Measurements of the cavity response without and with the metamaterial absorber are presented and compared with full wave simulations. Field distribution for the pillbox intrinsic modes under scrutiny is also presented, showing that damping induced by the metamaterial critically depends on its relative position inside the cavity.
  • 其他摘要:Abstract In many resonant structures the damping of parasitic or higher order modes is indispensable to guarantee a correct and stable performance. This is particularly true in the microwave region in case of cavities or other resonant systems operating in accelerating structures, where the mitigation of spurious resonance effects is mandatory to achieve high quality particle beams. We present the results on the mode suppression in a real pillbox cavity by inserting a properly designed pyramidal metamaterial that acts as light, small volume damper for specific resonances in the range 3–4 GHz, only slightly perturbing other intrinsic modes. Measurements of the cavity response without and with the metamaterial absorber are presented and compared with full wave simulations. Field distribution for the pillbox intrinsic modes under scrutiny is also presented, showing that damping induced by the metamaterial critically depends on its relative position inside the cavity.
国家哲学社会科学文献中心版权所有