首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Construction of an artificial system for ambrein biosynthesis and investigation of some biological activities of ambrein
  • 本地全文:下载
  • 作者:Yota Yamabe ; Yukina Kawagoe ; Kotone Okuno
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-76624-y
  • 出版社:Springer Nature
  • 摘要:Ambergris, a sperm whale metabolite, has long been used as a fragrance and traditional medication, but it is now rarely available. The odor components of ambergris result from the photooxidative degradation of the major component, ambrein. The pharmacological activities of ambergris have also been attributed to ambrein. However, efficient production of ambrein and odor compounds has not been achieved. Here, we constructed a system for the synthesis of ambrein and odor components. First, we created a new triterpene synthase, “ambrein synthase,” for mass production of ambrein by redesigning a bacterial enzyme. The ambrein yields were approximately 20 times greater than those reported previously. Next, an efficient photooxidative conversion system from ambrein to a range of volatiles of ambergris was established. The yield of volatiles was 8–15%. Finally, two biological activities, promotion of osteoclast differentiation and prevention of amyloid β-induced apoptosis, were discovered using the synthesized ambrein.
  • 其他摘要:Abstract Ambergris, a sperm whale metabolite, has long been used as a fragrance and traditional medication, but it is now rarely available. The odor components of ambergris result from the photooxidative degradation of the major component, ambrein. The pharmacological activities of ambergris have also been attributed to ambrein. However, efficient production of ambrein and odor compounds has not been achieved. Here, we constructed a system for the synthesis of ambrein and odor components. First, we created a new triterpene synthase, “ambrein synthase,” for mass production of ambrein by redesigning a bacterial enzyme. The ambrein yields were approximately 20 times greater than those reported previously. Next, an efficient photooxidative conversion system from ambrein to a range of volatiles of ambergris was established. The yield of volatiles was 8–15%. Finally, two biological activities, promotion of osteoclast differentiation and prevention of amyloid β-induced apoptosis, were discovered using the synthesized ambrein.
国家哲学社会科学文献中心版权所有