首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Hierarchical analysis of ontogenetic time to describe heterochrony and taxonomy of developmental stages
  • 本地全文:下载
  • 作者:Guillaume Lecointre ; Nalani K. Schnell ; Fabrice Teletchea
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-76270-4
  • 出版社:Springer Nature
  • 摘要:Even though an accurate description of early life stages is available for some teleostean species in form of embryonic and post-embryonic developmental tables, there is poor overlap between species-specific staging vocabularies beyond the taxonomic family level. What is called “embryonic period”, “larval period”, “metamorphosis”, or “juvenile” is anatomically different across teleostean families. This problem, already pointed out 50 years ago, challenges the consistency of developmental biology, embryology, systematics, and hampers an efficient aquaculture diversification. We propose a general solution by producing a proof-of-concept hierarchical analysis of ontogenetic time using a set of four freshwater species displaying strongly divergent reproductive traits. With a parsimony analysis of a matrix where “operational taxonomic units” are species at a given ontogenetic time segment and characters are organs or structures which are coded present or absent at this time, we show that the hierarchies obtained have both very high consistency and retention index, indicating that the ontogenetic time is correctly grasped through a hierarchical graph. This allows to formally detect developmental heterochronies and might provide a baseline to name early life stages for any set of species. The present method performs a phylogenetic segmentation of ontogenetic time, which can be correctly seen as depicting ontophylogenesis.
  • 其他摘要:Abstract Even though an accurate description of early life stages is available for some teleostean species in form of embryonic and post-embryonic developmental tables, there is poor overlap between species-specific staging vocabularies beyond the taxonomic family level. What is called “embryonic period”, “larval period”, “metamorphosis”, or “juvenile” is anatomically different across teleostean families. This problem, already pointed out 50 years ago, challenges the consistency of developmental biology, embryology, systematics, and hampers an efficient aquaculture diversification. We propose a general solution by producing a proof-of-concept hierarchical analysis of ontogenetic time using a set of four freshwater species displaying strongly divergent reproductive traits. With a parsimony analysis of a matrix where “operational taxonomic units” are species at a given ontogenetic time segment and characters are organs or structures which are coded present or absent at this time, we show that the hierarchies obtained have both very high consistency and retention index, indicating that the ontogenetic time is correctly grasped through a hierarchical graph. This allows to formally detect developmental heterochronies and might provide a baseline to name early life stages for any set of species. The present method performs a phylogenetic segmentation of ontogenetic time, which can be correctly seen as depicting ontophylogenesis.
国家哲学社会科学文献中心版权所有