首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Bio-process performance, evaluation of enzyme and non-enzyme mediated composting of vegetable market complex waste
  • 本地全文:下载
  • 作者:V. Murugesan ; D. Joshua Amarnath
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-75766-3
  • 出版社:Springer Nature
  • 摘要:Vegetable Market have become major sources of organic waste. Some of such waste when being diverted to landfills not only increase the landfill loading but also contribute to increase greenhouse gas emission. Of the many technologies available in handling such hugely generated waste, composting has proven very effective for decades. Enzyme and non-enzyme mediated aerobic composting of vegetable market complex waste (VMCW) have been investigated. Conventional composting technique though being capable of handling large quantum of waste are found to consume more time. Proven to be disadvantages factor. In the present investigation, the pre-cultured seed inoculums used for vegetable market complex waste, shortened the typical composting period from 45 to 9 days for the first time. Also, rapid size and volume reduction of VMCW was witnessed. The organic degradation of VMCW was observed as 42% (82 ± 2.83% to 40.82 ± 0.61%), with a volume reduction from 0.012m3 to 0.003 m3 within 9 days. An enriched nutrients NPK level of compost bio-fertilizer was recorded as 0.91% w/w, 0.5% w/w and 1.029% w/w respectively. Compost maturity observed through the X-ray diffraction (XRD) analysis of the manure confirmed the conversion of the crystal structure of the compost particle to amorphous form and the mineralization of organic matter during the composting. Thus, the fermented pre-cultured seed inoculums favored an enhanced nutrients level with shortened composting time.
  • 其他摘要:Abstract Vegetable Market have become major sources of organic waste. Some of such waste when being diverted to landfills not only increase the landfill loading but also contribute to increase greenhouse gas emission. Of the many technologies available in handling such hugely generated waste, composting has proven very effective for decades. Enzyme and non-enzyme mediated aerobic composting of vegetable market complex waste (VMCW) have been investigated. Conventional composting technique though being capable of handling large quantum of waste are found to consume more time. Proven to be disadvantages factor. In the present investigation, the pre-cultured seed inoculums used for vegetable market complex waste, shortened the typical composting period from 45 to 9 days for the first time. Also, rapid size and volume reduction of VMCW was witnessed. The organic degradation of VMCW was observed as 42% (82 ± 2.83% to 40.82 ± 0.61%), with a volume reduction from 0.012m 3 to 0.003 m 3 within 9 days. An enriched nutrients NPK level of compost bio-fertilizer was recorded as 0.91% w/w, 0.5% w/w and 1.029% w/w respectively. Compost maturity observed through the X-ray diffraction (XRD) analysis of the manure confirmed the conversion of the crystal structure of the compost particle to amorphous form and the mineralization of organic matter during the composting. Thus, the fermented pre-cultured seed inoculums favored an enhanced nutrients level with shortened composting time.
国家哲学社会科学文献中心版权所有