首页    期刊浏览 2025年07月05日 星期六
登录注册

文章基本信息

  • 标题:Super resolution DOA estimation based on deep neural network
  • 本地全文:下载
  • 作者:Wanli Liu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-76608-y
  • 出版社:Springer Nature
  • 摘要:Recently, deep neural network (DNN) studies on direction-of-arrival (DOA) estimations have attracted more and more attention. This new method gives an alternative way to deal with DOA problem and has successfully shown its potential application. However, these works are often restricted to previously known signal number, same signal-to-noise ratio (SNR) or large intersignal angular distance, which will hinder their generalization in real application. In this paper, we present a novel DNN framework that realizes higher resolution and better generalization to random signal number and SNR. Simulation results outperform that of previous works and reach the state of the art.
  • 其他摘要:Abstract Recently, deep neural network (DNN) studies on direction-of-arrival (DOA) estimations have attracted more and more attention. This new method gives an alternative way to deal with DOA problem and has successfully shown its potential application. However, these works are often restricted to previously known signal number, same signal-to-noise ratio (SNR) or large intersignal angular distance, which will hinder their generalization in real application. In this paper, we present a novel DNN framework that realizes higher resolution and better generalization to random signal number and SNR. Simulation results outperform that of previous works and reach the state of the art.
国家哲学社会科学文献中心版权所有