首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Jitter-free 40-fs 375-keV electron pulses directly accelerated by an intense laser beam and their application to direct observation of laser pulse propagation in a vacuum
  • 本地全文:下载
  • 作者:Shunsuke Inoue ; Shuji Sakabe ; Yoshihide Nakamiya
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-77236-2
  • 出版社:Springer Nature
  • 摘要:We report the generation of ultrashort bright electron pulses directly driven by irradiating a solid target with intense femtosecond laser pulses. The duration of electron pulses after compression by a phase rotator composed of permanent magnets was measured as 89 fs via the ponderomotive scattering of electron and laser pulses, which were almost at the compression limit due to the dispersion of the electron optics. The electron pulse compression system consisting of permanent magnets enabled extremely high timing stability between the laser pulse and electron pulse. The long-term RMS arrival time drift was below 14 fs in 4 h, which was limited by the resolution of the current setup. Because there was no time-varying field to generate jitter, the timing jitter was essentially reduced to zero. To demonstrate the capability of the ultrafast electron pulses, we used them to directly visualize laser pulse propagation in a vacuum and perform 2D mapping of the electric fields generated by low-density plasma in real time.
  • 其他摘要:Abstract We report the generation of ultrashort bright electron pulses directly driven by irradiating a solid target with intense femtosecond laser pulses. The duration of electron pulses after compression by a phase rotator composed of permanent magnets was measured as 89 fs via the ponderomotive scattering of electron and laser pulses, which were almost at the compression limit due to the dispersion of the electron optics. The electron pulse compression system consisting of permanent magnets enabled extremely high timing stability between the laser pulse and electron pulse. The long-term RMS arrival time drift was below 14 fs in 4 h, which was limited by the resolution of the current setup. Because there was no time-varying field to generate jitter, the timing jitter was essentially reduced to zero. To demonstrate the capability of the ultrafast electron pulses, we used them to directly visualize laser pulse propagation in a vacuum and perform 2D mapping of the electric fields generated by low-density plasma in real time.
国家哲学社会科学文献中心版权所有