首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data
  • 本地全文:下载
  • 作者:Quang-Huy Nguyen ; Duc-Hau Le
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-77318-1
  • 出版社:Springer Nature
  • 摘要:The cumulative of genes carrying mutations is vital for the establishment and development of cancer. However, this driver gene exploring research line has selected and used types of tools and models of analysis unsystematically and discretely. Also, the previous studies may have neglected low-frequency drivers and seldom predicted subgroup specificities of identified driver genes. In this study, we presented an improved driver gene identification and analysis pipeline that comprises the four most widely focused analyses for driver genes: enrichment analysis, clinical feature association with expression profiles of identified driver genes as well as with their functional modules, and patient stratification by existing advanced computational tools integrating multi-omics data. The improved pipeline's general usability was demonstrated straightforwardly for breast cancer, validated by some independent databases. Accordingly, 31 validated driver genes, including four novel ones, were discovered. Subsequently, we detected cancer-related significantly enriched gene ontology terms and pathways, probable drug targets, two co-expressed modules associated significantly with several clinical features, such as number of positive lymph nodes, Nottingham prognostic index, and tumor stage, and two biologically distinct groups of BRCA patients. Data and source code of the case study can be downloaded at https://github.com/hauldhut/drivergene .
  • 其他摘要:Abstract The cumulative of genes carrying mutations is vital for the establishment and development of cancer. However, this driver gene exploring research line has selected and used types of tools and models of analysis unsystematically and discretely. Also, the previous studies may have neglected low-frequency drivers and seldom predicted subgroup specificities of identified driver genes. In this study, we presented an improved driver gene identification and analysis pipeline that comprises the four most widely focused analyses for driver genes: enrichment analysis, clinical feature association with expression profiles of identified driver genes as well as with their functional modules, and patient stratification by existing advanced computational tools integrating multi-omics data. The improved pipeline's general usability was demonstrated straightforwardly for breast cancer, validated by some independent databases. Accordingly, 31 validated driver genes, including four novel ones, were discovered. Subsequently, we detected cancer-related significantly enriched gene ontology terms and pathways, probable drug targets, two co-expressed modules associated significantly with several clinical features, such as number of positive lymph nodes, Nottingham prognostic index, and tumor stage, and two biologically distinct groups of BRCA patients. Data and source code of the case study can be downloaded at https://github.com/hauldhut/drivergene .
国家哲学社会科学文献中心版权所有