首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:The importance of the surface roughness and running band area on the bottom of a stone for the curling phenomenon
  • 本地全文:下载
  • 作者:Takao Kameda ; Daiki Shikano ; Yasuhiro Harada
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-76660-8
  • 出版社:Springer Nature
  • 摘要:Curling is a sport in which players deliver a cylindrical granite stone on an ice sheet in a curling hall toward a circular target located 28.35 m away. The stone gradually moves laterally, or curls, as it slides on ice. Although several papers have been published to propose a mechanism of the curling phenomenon for the last 100 years, no established theory exists on the subject, because detailed measurements on a pebbled ice surface and a curling stone sliding on ice and detailed theoretical model calculations have yet to be available. Here we show using our precise experimental data that the curl distance is primarily determined by the surface roughness and the surface area of the running band on the bottom of a stone and that the ice surface condition has smaller effects on the curl distance. We also propose a possible mechanism affecting the curling phenomena of a curing stone based on our results. We expect that our findings will form the basis of future curling theories and model calculations regarding the curling phenomenon of curling stones. Using the relation between the curl distance and the surface roughness of the running band in this study, the curl distance of a stone sliding on ice in every curling hall can be adjusted to an appropriate value by changing the surface roughness of the running band on the bottom of a stone.
  • 其他摘要:Abstract Curling is a sport in which players deliver a cylindrical granite stone on an ice sheet in a curling hall toward a circular target located 28.35 m away. The stone gradually moves laterally, or curls, as it slides on ice. Although several papers have been published to propose a mechanism of the curling phenomenon for the last 100 years, no established theory exists on the subject, because detailed measurements on a pebbled ice surface and a curling stone sliding on ice and detailed theoretical model calculations have yet to be available. Here we show using our precise experimental data that the curl distance is primarily determined by the surface roughness and the surface area of the running band on the bottom of a stone and that the ice surface condition has smaller effects on the curl distance. We also propose a possible mechanism affecting the curling phenomena of a curing stone based on our results. We expect that our findings will form the basis of future curling theories and model calculations regarding the curling phenomenon of curling stones. Using the relation between the curl distance and the surface roughness of the running band in this study, the curl distance of a stone sliding on ice in every curling hall can be adjusted to an appropriate value by changing the surface roughness of the running band on the bottom of a stone.
国家哲学社会科学文献中心版权所有