摘要:The island of Madagascar, situated off the southeast coast of Africa, shows the first evidence of human presence ~ 10,000 years ago; however, other archaeological data indicates a settlement of the modern peoples of the island distinctly more recent, perhaps > 1500 years ago. Bushpigs of the genus Potamochoerus (family Suidae), are today widely distributed in Madagascar and presumed to have been introduced from Africa at some stage by human immigrants to the island. However, disparities about their origins in Madagascar have been presented in the literature, including the possibility of endemic subspecies, and few empirical data are available. Furthermore, the separation of bushpigs in Madagascar from their mainland relatives may have favoured the evolution of a different repertoire of immune genes first due to a founder effect and then as a response to distinct pathogens compared to their ancestors. Molecular analysis confirmed the species status of the bushpig in Madagascar as P. larvatus, likely introduced from the central region of southern Africa, with no genetic evidence for the recognition of eastern and western subspecies as suggested from previous cranial morphology examination. Investigation of the immunologically important SLA-DQB1 peptide-binding region showed a different immune repertoire of bushpigs in Madagascar compared to those on the African mainland, with seventeen exon-2 haplotypes unique to bushpigs in Madagascar (2/28 haplotypes shared). This suggests that the MHC diversity of the Madagascar populations may have enabled Malagasy bushpigs to adapt to new environments.
其他摘要:Abstract The island of Madagascar, situated off the southeast coast of Africa, shows the first evidence of human presence ~ 10,000 years ago; however, other archaeological data indicates a settlement of the modern peoples of the island distinctly more recent, perhaps > 1500 years ago. Bushpigs of the genus Potamochoerus (family Suidae), are today widely distributed in Madagascar and presumed to have been introduced from Africa at some stage by human immigrants to the island. However, disparities about their origins in Madagascar have been presented in the literature, including the possibility of endemic subspecies, and few empirical data are available. Furthermore, the separation of bushpigs in Madagascar from their mainland relatives may have favoured the evolution of a different repertoire of immune genes first due to a founder effect and then as a response to distinct pathogens compared to their ancestors. Molecular analysis confirmed the species status of the bushpig in Madagascar as P. larvatus , likely introduced from the central region of southern Africa, with no genetic evidence for the recognition of eastern and western subspecies as suggested from previous cranial morphology examination. Investigation of the immunologically important SLA-DQB1 peptide-binding region showed a different immune repertoire of bushpigs in Madagascar compared to those on the African mainland, with seventeen exon-2 haplotypes unique to bushpigs in Madagascar (2/28 haplotypes shared). This suggests that the MHC diversity of the Madagascar populations may have enabled Malagasy bushpigs to adapt to new environments.