标题:Simultaneous evaluation of antioxidative serum profiles facilitates the diagnostic screening of autism spectrum disorder in under-6-year-old children
摘要:This case–control study aimed to assess oxidative stress alterations in autism spectrum disorder (ASD). We used the MULTIS method, an electron spin resonance-based technique measuring multiple free radical scavenging activities simultaneously, in combination with conventional oxidative stress markers to investigate the ability of this MULTIS approach as a non-behavioural diagnostic tool for children with ASD. Serum samples of 39 children with ASD and 58 age-matched children with typical development were analysed. The ASD group showed decreased hydroxyl radical (·OH) and singlet oxygen scavenging activity with increased serum coenzyme Q10 oxidation rate, indicating a prooxidative tendency in ASD. By contrast, scavenging activities against superoxide (O2·−) and alkoxyl radical (RO·) were increased in the ASD group suggesting antioxidative shifts. In the subgroup analysis of 6-year-olds or younger, the combination of ·OH, O2·−, and RO· scavenging activities predicted ASD with high odds ratio (50.4), positive likelihood (12.6), and percentage of correct classification (87.0%). Our results indicate that oxidative stress in children with ASD is not simply elevated but rather shows a compensatory shift. MULTIS measurements may serve as a very powerful non-behavioural tool for the diagnosis of ASD in children.
其他摘要:Abstract This case–control study aimed to assess oxidative stress alterations in autism spectrum disorder (ASD). We used the MULTIS method, an electron spin resonance-based technique measuring multiple free radical scavenging activities simultaneously, in combination with conventional oxidative stress markers to investigate the ability of this MULTIS approach as a non-behavioural diagnostic tool for children with ASD. Serum samples of 39 children with ASD and 58 age-matched children with typical development were analysed. The ASD group showed decreased hydroxyl radical ( · OH) and singlet oxygen scavenging activity with increased serum coenzyme Q10 oxidation rate, indicating a prooxidative tendency in ASD. By contrast, scavenging activities against superoxide (O 2 ·− ) and alkoxyl radical (RO · ) were increased in the ASD group suggesting antioxidative shifts. In the subgroup analysis of 6-year-olds or younger, the combination of · OH, O 2 ·− , and RO · scavenging activities predicted ASD with high odds ratio (50.4), positive likelihood (12.6), and percentage of correct classification (87.0%). Our results indicate that oxidative stress in children with ASD is not simply elevated but rather shows a compensatory shift. MULTIS measurements may serve as a very powerful non-behavioural tool for the diagnosis of ASD in children.