首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Two pursuit strategies for a single sensorimotor control task in blowfly
  • 本地全文:下载
  • 作者:Leandre Varennes ; Holger G. Krapp ; Stephane Viollet
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-77607-9
  • 出版社:Springer Nature
  • 摘要:Effective visuomotor coordination is a necessary requirement for the survival of many terrestrial, aquatic, and aerial animal species. We studied the kinematics of aerial pursuit in the blowfly Lucilia sericata using an actuated dummy as target for freely flying males. We found that the flies perform target tracking in the horizontal plane and target interception in the vertical plane. Our behavioural data suggest that the flies’ trajectory changes are a controlled combination of target heading angle and of the rate of change of the bearing angle. We implemented control laws in kinematic models and found that the contributions of proportional navigation strategy are negligible. We concluded that the difference between horizontal and vertical control relates to the difference in target heading angle the fly keeps constant: 0° in azimuth and 23° in elevation. Our work suggests that male Lucilia control both horizontal and vertical steerings by employing proportional controllers to the error angles. In horizontal plane, this controller operates at time delays as small as 10 ms, the fastest steering response observed in any flying animal, so far.
  • 其他摘要:Abstract Effective visuomotor coordination is a necessary requirement for the survival of many terrestrial, aquatic, and aerial animal species. We studied the kinematics of aerial pursuit in the blowfly Lucilia sericata using an actuated dummy as target for freely flying males. We found that the flies perform target tracking in the horizontal plane and target interception in the vertical plane. Our behavioural data suggest that the flies’ trajectory changes are a controlled combination of target heading angle and of the rate of change of the bearing angle. We implemented control laws in kinematic models and found that the contributions of proportional navigation strategy are negligible. We concluded that the difference between horizontal and vertical control relates to the difference in target heading angle the fly keeps constant: 0° in azimuth and 23° in elevation. Our work suggests that male Lucilia control both horizontal and vertical steerings by employing proportional controllers to the error angles. In horizontal plane, this controller operates at time delays as small as 10 ms, the fastest steering response observed in any flying animal, so far.
国家哲学社会科学文献中心版权所有