摘要:Next-generation sequencing (NGS) has greatly advanced the studies of causative genes and variants of inherited diseases. While it is sometimes challenging to determine the pathogenicity of identified variants in NGS, the American College of Medical Genetics and Genomics established the guidelines to help the interpretation. However, as to the genetic screenings for patients with retinitis pigmentosa (RP) in Japan, none of the previous studies utilized the guidelines. Considering that EYS is the major causative gene of RP in Japan, we conducted stepwise genetic screening of 220 Japanese patients with RP utilizing the guidelines. Step 1–4 comprised the following, in order: Sanger sequencing for two major EYS founder mutations; targeted sequencing of all coding regions of EYS; whole genome sequencing; Sanger sequencing for Alu element insertion in RP1, a recently determined founder mutation for RP. Among the detected variants, 2, 19, 173, and 1 variant(s) were considered pathogenic and 8, 41, 44, and 5 patients were genetically solved in step 1, 2, 3, and 4, respectively. Totally, 44.5% (98/220) of the patients were genetically solved, and 50 (51.0%) were EYS-associated and 5 (5.1%) were Alu element-associated. Among the unsolved 122 patients, 22 had at least one possible pathogenic variant.
其他摘要:Abstract Next-generation sequencing (NGS) has greatly advanced the studies of causative genes and variants of inherited diseases. While it is sometimes challenging to determine the pathogenicity of identified variants in NGS, the American College of Medical Genetics and Genomics established the guidelines to help the interpretation. However, as to the genetic screenings for patients with retinitis pigmentosa (RP) in Japan, none of the previous studies utilized the guidelines. Considering that EYS is the major causative gene of RP in Japan, we conducted stepwise genetic screening of 220 Japanese patients with RP utilizing the guidelines. Step 1–4 comprised the following, in order: Sanger sequencing for two major EYS founder mutations; targeted sequencing of all coding regions of EYS; whole genome sequencing; Sanger sequencing for Alu element insertion in RP1 , a recently determined founder mutation for RP. Among the detected variants, 2, 19, 173, and 1 variant(s) were considered pathogenic and 8, 41, 44, and 5 patients were genetically solved in step 1, 2, 3, and 4, respectively. Totally, 44.5% (98/220) of the patients were genetically solved, and 50 (51.0%) were EYS -associated and 5 (5.1%) were Alu element-associated. Among the unsolved 122 patients, 22 had at least one possible pathogenic variant.