首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:A possible precursor prior to the Lushan earthquake from GPS observations in the southern Longmenshan
  • 本地全文:下载
  • 作者:Qixin Wang ; Xiwei Xu ; Zaisen Jiang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-77634-6
  • 出版社:Springer Nature
  • 摘要:Global Positioning System (GPS) stations installed in and around the epicenter of the Lushan earthquake (Mw 6.7), which occurred almost 5 years after the 2008 Wenchuan earthquake, recorded preseismic deformation corresponding to the Lushan earthquake within the southern Longmenshan thrust belt. A half-space dislocation model is used to simulate the theoretical values of the postseismic displacements caused by the 2008 Wenchuan earthquake, and after transforming the reference frame and filtering the GPS displacement time series, the theoretical and observed GPS values are compared to identify the geodetic anomaly preceding the Lushan earthquake. The abnormal extent of this geodetic anomaly decreases with increasing epicentral distance for each GPS site. This geodetic signal reflects preslip along a locked section of the 2013 seismogenic fault, which caused the accumulation of elastic strain energy until the faulting strength was overcome, thereby generating the Lushan earthquake. Hence, this anomaly might be used as an observable and identifiable precursor to forecast an impending earthquake within a period of less than two and half years before its occurrence.
  • 其他摘要:Abstract Global Positioning System (GPS) stations installed in and around the epicenter of the Lushan earthquake (Mw 6.7), which occurred almost 5 years after the 2008 Wenchuan earthquake, recorded preseismic deformation corresponding to the Lushan earthquake within the southern Longmenshan thrust belt. A half-space dislocation model is used to simulate the theoretical values of the postseismic displacements caused by the 2008 Wenchuan earthquake, and after transforming the reference frame and filtering the GPS displacement time series, the theoretical and observed GPS values are compared to identify the geodetic anomaly preceding the Lushan earthquake. The abnormal extent of this geodetic anomaly decreases with increasing epicentral distance for each GPS site. This geodetic signal reflects preslip along a locked section of the 2013 seismogenic fault, which caused the accumulation of elastic strain energy until the faulting strength was overcome, thereby generating the Lushan earthquake. Hence, this anomaly might be used as an observable and identifiable precursor to forecast an impending earthquake within a period of less than two and half years before its occurrence.
国家哲学社会科学文献中心版权所有