首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Automatic dementia screening and scoring by applying deep learning on clock-drawing tests
  • 本地全文:下载
  • 作者:Shuqing Chen ; Daniel Stromer ; Harb Alnasser Alabdalrahim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-74710-9
  • 出版社:Springer Nature
  • 摘要:Dementia is one of the most common neurological syndromes in the world. Usually, diagnoses are made based on paper-and-pencil tests and scored depending on personal judgments of experts. This technique can introduce errors and has high inter-rater variability. To overcome these issues, we present an automatic assessment of the widely used paper-based clock-drawing test by means of deep neural networks. Our study includes a comparison of three modern architectures: VGG16, ResNet-152, and DenseNet-121. The dataset consisted of 1315 individuals. To deal with the limited amount of data, which also included several dementia types, we used optimization strategies for training the neural network. The outcome of our work is a standardized and digital estimation of the dementia screening result and severity level for an individual. We achieved accuracies of 96.65% for screening and up to 98.54% for scoring, overcoming the reported state-of-the-art as well as human accuracies. Due to the digital format, the paper-based test can be simply scanned by using a mobile device and then be evaluated also in areas where there is a staff shortage or where no clinical experts are available.
  • 其他摘要:Abstract Dementia is one of the most common neurological syndromes in the world. Usually, diagnoses are made based on paper-and-pencil tests and scored depending on personal judgments of experts. This technique can introduce errors and has high inter-rater variability. To overcome these issues, we present an automatic assessment of the widely used paper-based clock-drawing test by means of deep neural networks. Our study includes a comparison of three modern architectures: VGG16, ResNet-152, and DenseNet-121. The dataset consisted of 1315 individuals. To deal with the limited amount of data, which also included several dementia types, we used optimization strategies for training the neural network. The outcome of our work is a standardized and digital estimation of the dementia screening result and severity level for an individual. We achieved accuracies of 96.65% for screening and up to 98.54% for scoring, overcoming the reported state-of-the-art as well as human accuracies. Due to the digital format, the paper-based test can be simply scanned by using a mobile device and then be evaluated also in areas where there is a staff shortage or where no clinical experts are available.
国家哲学社会科学文献中心版权所有