首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Abrupt warming and salinification of intermediate waters interplays with decline of deep convection in the Northwestern Mediterranean Sea
  • 本地全文:下载
  • 作者:Félix Margirier ; Pierre Testor ; Emma Heslop
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-77859-5
  • 出版社:Springer Nature
  • 摘要:The Mediterranean Sea is a hotspot for climate change, and recent studies have reported its intense warming and salinification. In this study, we use an outstanding dataset relying mostly on glider endurance lines but also on other platforms to track these trends in the northwestern Mediterranean where deep convection occurs. Thanks to a high spatial coverage and a high temporal resolution over the period 2007–2017, we observed the warming ( 0.06 $$^ rc$$ C year $$^{-1}$$ ) and salinification ( 0.012 year $$^{-1}$$ ) of Levantine Intermediate Water (LIW) in the Ligurian Sea. These rates are similar to those reported closer to its formation area in the Eastern Mediterranean Sea. Further downstream, in the Gulf of Lion, the intermediate heat and salt content were exported to the deep layers from 2009 to 2013 thanks to deep convection processes. In 2014, a LIW step of 0.3 $$^ rc$$ C and 0.08 in salinity could be observed concomitant with a weak winter convection. Warmer and more saline LIW subsequently accumulated in the northwestern basin in the absence of intense deep convective winters until 2018. Deep stratification below the LIW thus increased, which, together with the air–sea heat fluxes intensity, constrained the depth of convection. A key prognostic indicator of the intensity of deep convective events appears to be the convection depth of the previous year.
  • 其他摘要:Abstract The Mediterranean Sea is a hotspot for climate change, and recent studies have reported its intense warming and salinification. In this study, we use an outstanding dataset relying mostly on glider endurance lines but also on other platforms to track these trends in the northwestern Mediterranean where deep convection occurs. Thanks to a high spatial coverage and a high temporal resolution over the period 2007–2017, we observed the warming ( 0.06  $$^\circ$$ ∘ C year $$^{-1}$$ - 1 ) and salinification ( 0.012 year $$^{-1}$$ - 1 ) of Levantine Intermediate Water (LIW) in the Ligurian Sea. These rates are similar to those reported closer to its formation area in the Eastern Mediterranean Sea. Further downstream, in the Gulf of Lion, the intermediate heat and salt content were exported to the deep layers from 2009 to 2013 thanks to deep convection processes. In 2014, a LIW step of 0.3  $$^\circ$$ ∘ C and 0.08 in salinity could be observed concomitant with a weak winter convection. Warmer and more saline LIW subsequently accumulated in the northwestern basin in the absence of intense deep convective winters until 2018. Deep stratification below the LIW thus increased, which, together with the air–sea heat fluxes intensity, constrained the depth of convection. A key prognostic indicator of the intensity of deep convective events appears to be the convection depth of the previous year.
国家哲学社会科学文献中心版权所有