首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Affordable automated phenotypic antibiotic susceptibility testing method based on a contactless conductometric sensor
  • 本地全文:下载
  • 作者:Xuzhi Zhang ; Xiaoyu Jiang ; Qianqian Yang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-77938-7
  • 出版社:Springer Nature
  • 摘要:User-friendly phenotypic antibiotic susceptibility testing (AST) methods are urgently needed in many fields including clinical medicine, epidemiological studies and drug research. Herein, we report a convenient and cost-effective phenotypic AST method based on online monitoring bacterial growth with a developed 8-channel contactless conductometric sensor (CCS). Using E. coli and V. parahaemolyticus as microorganism models, as well as enoxacin, florfenicol, ampicillin, kanamycin and sulfadiazine as antibiotic probes. The minimum inhibitory concentration (MIC) determination was validated in comparison with standard broth microdilution (BMD) assay. The total essential agreements between the CCS AST assays and the reference BMD AST assays are 68.8–92.3%. The CCS has an approximate price of $9,000 (USD). Requiring neither chemical nor biotic auxiliary materials for the assay makes the cost of each sample < $1. The MICs obtained with the automated CCS AST assays are more precise than those obtained with the manual BMD. Moreover, in 72 percent of the counterpart, the MICs obtained with the CCS AST assays are higher than that obtained with the BMD AST assays. The proposed CCS AST method has advantages in affordability, accuracy, sensitivity and user-friendliness.
  • 其他摘要:Abstract User-friendly phenotypic antibiotic susceptibility testing (AST) methods are urgently needed in many fields including clinical medicine, epidemiological studies and drug research. Herein, we report a convenient and cost-effective phenotypic AST method based on online monitoring bacterial growth with a developed 8-channel contactless conductometric sensor (CCS). Using E. coli and V. parahaemolyticus as microorganism models, as well as enoxacin, florfenicol, ampicillin, kanamycin and sulfadiazine as antibiotic probes. The minimum inhibitory concentration (MIC) determination was validated in comparison with standard broth microdilution (BMD) assay. The total essential agreements between the CCS AST assays and the reference BMD AST assays are 68.8–92.3%. The CCS has an approximate price of $9,000 (USD). Requiring neither chemical nor biotic auxiliary materials for the assay makes the cost of each sample < $1. The MICs obtained with the automated CCS AST assays are more precise than those obtained with the manual BMD. Moreover, in 72 percent of the counterpart, the MICs obtained with the CCS AST assays are higher than that obtained with the BMD AST assays. The proposed CCS AST method has advantages in affordability, accuracy, sensitivity and user-friendliness.
国家哲学社会科学文献中心版权所有