首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Increased expression of LCN2 formed a positive feedback loop with activation of the ERK pathway in human kidney cells during kidney stone formation
  • 本地全文:下载
  • 作者:Zhang Hui ; Zhu Jiang ; Du Qiao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-75670-w
  • 出版社:Springer Nature
  • 摘要:Kidney stones are a common threat to the health of elderly patients with a high incidence of disease. However, the specific molecular mechanism of the formation of kidney stones has not been elucidated. Here, we combined signalling molecules with signalling pathways in a double positive circulation regulation model. In addition, we found that LCN2 plays a role in promoting kidney stones through regulation of the ERK signalling pathway and expression of other kidney stone-related genes. LCN2 expression was upregulated upon oxalate stimulation. P-ERK1/2 inhibition by U0126 in kidney epithelial cells resulted in decreased expression of LCN2. Furthermore, the upregulation of LCN2 not only depended on the activation of the ERK signalling pathway but also regulated the activation of the ERK signalling pathway. Importantly, upregulation of LCN2 not only caused kidney epithelial cell damage but also promoted the expression of other kidney stone-related genes. Our findings improved the understanding of LCN2 and might lead to the development of new therapeutic and prognostic markers for kidney stones.
  • 其他摘要:Abstract Kidney stones are a common threat to the health of elderly patients with a high incidence of disease. However, the specific molecular mechanism of the formation of kidney stones has not been elucidated. Here, we combined signalling molecules with signalling pathways in a double positive circulation regulation model. In addition, we found that LCN2 plays a role in promoting kidney stones through regulation of the ERK signalling pathway and expression of other kidney stone-related genes. LCN2 expression was upregulated upon oxalate stimulation. P-ERK1/2 inhibition by U0126 in kidney epithelial cells resulted in decreased expression of LCN2. Furthermore, the upregulation of LCN2 not only depended on the activation of the ERK signalling pathway but also regulated the activation of the ERK signalling pathway. Importantly, upregulation of LCN2 not only caused kidney epithelial cell damage but also promoted the expression of other kidney stone-related genes. Our findings improved the understanding of LCN2 and might lead to the development of new therapeutic and prognostic markers for kidney stones.
国家哲学社会科学文献中心版权所有