首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:COG5 variants lead to complex early onset retinal degeneration, upregulation of PERK and DNA damage
  • 本地全文:下载
  • 作者:Sami Tabbarah ; Erika Tavares ; Jason Charish
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-77394-3
  • 出版社:Springer Nature
  • 摘要:Leber congenital amaurosis (LCA), a form of autosomal recessive severe early-onset retinal degeneration, is an important cause of childhood blindness. This may be associated with systemic features or not. Here we identified COG5 compound-heterozygous variants in patients affected with a complex LCA phenotype associated with microcephaly and skeletal dysplasia. COG5 is a component of the COG complex, which facilitates retrograde Golgi trafficking; if disrupted this can result in protein misfolding. To date, variants in COG5 have been associated with a distinct congenital disorder of glycosylation (type IIi) and with a variant of Friedreich’s ataxia. We show that COG5 variants can also result in fragmentation of the Golgi apparatus and upregulation of the UPR modulator, PKR-like endoplasmic reticulum kinase (PERK). In addition, upregulation of PERK induces DNA damage in cultured cells and in murine retina. This study identifies a novel role for COG5 in maintaining ER protein homeostasis and that disruption of that role results in activation of PERK and early-onset retinal degeneration, microcephaly and skeletal dysplasia. These results also highlight the importance of the UPR pathway in early-onset retinal dystrophy and as potential therapeutic targets for patients.
  • 其他摘要:Abstract Leber congenital amaurosis (LCA), a form of autosomal recessive severe early-onset retinal degeneration, is an important cause of childhood blindness. This may be associated with systemic features or not. Here we identified COG5 compound-heterozygous variants in patients affected with a complex LCA phenotype associated with microcephaly and skeletal dysplasia. COG5 is a component of the COG complex, which facilitates retrograde Golgi trafficking; if disrupted this can result in protein misfolding. To date, variants in COG5 have been associated with a distinct congenital disorder of glycosylation (type IIi) and with a variant of Friedreich’s ataxia. We show that COG5 variants can also result in fragmentation of the Golgi apparatus and upregulation of the UPR modulator, PKR-like endoplasmic reticulum kinase (PERK). In addition, upregulation of PERK induces DNA damage in cultured cells and in murine retina. This study identifies a novel role for COG5 in maintaining ER protein homeostasis and that disruption of that role results in activation of PERK and early-onset retinal degeneration, microcephaly and skeletal dysplasia. These results also highlight the importance of the UPR pathway in early-onset retinal dystrophy and as potential therapeutic targets for patients.
国家哲学社会科学文献中心版权所有