首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Silk fibroin vascular graft: a promising tissue-engineered scaffold material for abdominal venous system replacement
  • 本地全文:下载
  • 作者:Sho Kiritani ; Junichi Kaneko ; Daisuke Ito
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-78020-y
  • 出版社:Springer Nature
  • 摘要:No alternative tissue-engineered vascular grafts for the abdominal venous system are reported. The present study focused on the development of new tissue-engineered vascular graft using a silk-based scaffold material for abdominal venous system replacement. A rat vein, the inferior vena cava, was replaced by a silk fibroin (SF, a biocompatible natural insoluble protein present in silk thread), tissue-engineered vascular graft (10 mm long, 3 mm diameter, n = 19, SF group). The 1 and 4 -week patency rates and histologic reactions were compared with those of expanded polytetrafluoroethylene vascular grafts (n = 10, ePTFE group). The patency rate at 1 and 4 weeks after replacement in the SF group was 100.0% and 94.7%, and that in the ePTFE group was 100.0% and 80.0%, respectively. There was no significant difference between groups (p = 0.36). Unlike the ePTFE graft, CD31-positive endothelial cells covered the whole luminal surface of the SF vascular graft at 4 weeks, indicating better endothelialization. SF vascular grafts may be a promising tissue-engineered scaffold material for abdominal venous system replacement.
  • 其他摘要:Abstract No alternative tissue-engineered vascular grafts for the abdominal venous system are reported. The present study focused on the development of new tissue-engineered vascular graft using a silk-based scaffold material for abdominal venous system replacement. A rat vein, the inferior vena cava, was replaced by a silk fibroin (SF, a biocompatible natural insoluble protein present in silk thread), tissue-engineered vascular graft (10 mm long, 3 mm diameter, n = 19, SF group). The 1 and 4 -week patency rates and histologic reactions were compared with those of expanded polytetrafluoroethylene vascular grafts (n = 10, ePTFE group). The patency rate at 1 and 4 weeks after replacement in the SF group was 100.0% and 94.7%, and that in the ePTFE group was 100.0% and 80.0%, respectively. There was no significant difference between groups ( p  = 0.36). Unlike the ePTFE graft, CD31-positive endothelial cells covered the whole luminal surface of the SF vascular graft at 4 weeks, indicating better endothelialization. SF vascular grafts may be a promising tissue-engineered scaffold material for abdominal venous system replacement.
国家哲学社会科学文献中心版权所有