摘要:Falls are common in patients with neurological disorders and are a primary cause of injuries. Nonetheless, fall-associated gait characteristics are poorly understood in these patients. Objective, quantitative gait analysis is an important tool to identify the principal fall-related motor characteristics and to advance fall prevention in patients with neurological disorders. Fall incidence was assessed in 60 subjects with different neurological disorders. Patients underwent a comprehensive set of functional assessments including instrumented gait analysis, computerized postural assessments and clinical walking tests. Determinants of falls were assessed by binary logistic regression analysis and receiver operator characteristics (ROC). The best single determinant of fallers was a step length reduction at slow walking speed reaching an accuracy of 67.2% (ROC AUC: 0.669; p = 0.027). The combination of 4 spatio-temporal gait parameters including step length and parameters of variability and asymmetry were able to classify fallers and non-fallers with an accuracy of 81.0% (ROC AUC: 0.882; p < 0.001). These findings suggest significant differences in specific spatio-temporal gait parameters between fallers and non-fallers among neurological patients. Fall-related impairments were mainly identified for spatio-temporal gait characteristics, suggesting that instrumented, objective gait analysis is an important tool to estimate patients' fall risk. Our results highlight pivotal fall-related walking deficits that might be targeted by future rehabilitative interventions that aim at attenuating falls.
其他摘要:Abstract Falls are common in patients with neurological disorders and are a primary cause of injuries. Nonetheless, fall-associated gait characteristics are poorly understood in these patients. Objective, quantitative gait analysis is an important tool to identify the principal fall-related motor characteristics and to advance fall prevention in patients with neurological disorders. Fall incidence was assessed in 60 subjects with different neurological disorders. Patients underwent a comprehensive set of functional assessments including instrumented gait analysis, computerized postural assessments and clinical walking tests. Determinants of falls were assessed by binary logistic regression analysis and receiver operator characteristics (ROC). The best single determinant of fallers was a step length reduction at slow walking speed reaching an accuracy of 67.2% (ROC AUC: 0.669; p = 0.027). The combination of 4 spatio-temporal gait parameters including step length and parameters of variability and asymmetry were able to classify fallers and non-fallers with an accuracy of 81.0% (ROC AUC: 0.882; p < 0.001). These findings suggest significant differences in specific spatio-temporal gait parameters between fallers and non-fallers among neurological patients. Fall-related impairments were mainly identified for spatio-temporal gait characteristics, suggesting that instrumented, objective gait analysis is an important tool to estimate patients' fall risk. Our results highlight pivotal fall-related walking deficits that might be targeted by future rehabilitative interventions that aim at attenuating falls.